


This	book	was	distributed	courtesy	of:

For	your	own	Unlimited	Reading	and	FREE	eBooks	today,	visit:
http://www.Free-eBooks.net	

Share	this	eBook	with	anyone	and	everyone	automatically	by	selecting	any	of	the	options	below:	

Share	on	Facebook

Share	on	Twitter

Share	on	LinkedIn

Send	via	e-mail

To	show	your	appreciation	to	the	author	and	help	others	have	wonderful	reading	experiences	and	find
helpful	information	too,	we'd	be	very	grateful	if	you'd	kindly

post	your	comments	for	this	book	here.

http://www.free-ebooks.net/
http://www.free-ebooks.net/
http://www.free-ebooks.net/share/epub-fb-1395220091
http://www.free-ebooks.net/share/epub-tw-1395220091
http://www.free-ebooks.net/share/epub-in-1395220091
mailto:?subject=Found%20this%20book%20for%20you.%20It's%20Free%20and%20I%20love%20it...&body=Hey%2c%20%0A%0AGot%20some%20great%20reading%20for%20you%20and%20it's%20FREE%20too!%20%0A%0AI%20just%20finished%20reading%20DSPA%20and%20highly%20recommend%20it%20for%20you.%20%0A%0AYou%20can%20get%20if%20for%20FREE%20here%20at%3a%20%0A%0Ahttp%3a%2f%2fwww.free-ebooks.net%2febook%2fDSPA%20%0A%0ACheck%20it%20out.%20See%20what%20you%20think.%20Let%20me%20know.
http://www.free-ebooks.net/ebook/DSPA/review


COPYRIGHT	INFORMATION

Free-eBooks.net	respects	the	intellectual	property	of	others.	When	a	book's	copyright	owner	submits	their	work	to	Free-eBooks.net,	they
are	granting	us	permission	to	distribute	such	material.	Unless	otherwise	stated	in	this	book,	this	permission	is	not	passed	onto	others.	As
such,	redistributing	this	book	without	the	copyright	owner's	permission	can	constitute	copyright	infringement.	If	you	believe	that	your
work	has	been	used	in	a	manner	that	constitutes	copyright	infringement,	please	follow	our	Notice	and	Procedure	for	Making	Claims	of

Copyright	Infringement	as	seen	in	our	Terms	of	Service	here:

http://www.free-ebooks.net/tos.html

http://www.free-ebooks.net/tos.html


DSPA

Collection	edited	by:	Janko	Calic

Content	authors:	Douglas	Jones,	Don	Johnson,	Ricardo	Radaelli-Sanchez,	Richard	Baraniuk,

Stephen	Kruzick,	Catherine	Elder,	Melissa	Selik,	Robert	Nowak,	Anders	Gjendemsjø,	Michael

Haag,	Benjamin	Fite,	Ivan	Selesnick,	and	Phil	Schniter



Online:	<	http://cnx.org/content/col10599/1.5>

This	selection	and	arrangement	of	content	as	a	collection	is	copyrighted	by	Janko	Calic.

It	is	licensed	under	the	Creative	Commons	Attribution	License:
http://creativecommons.org/licenses/by/2.0/

Collection	structure	revised:	2010/05/18

For	copyright	and	attribution	information	for	the	modules	contained	in	this	collection,	see	the	"
Attributions"	section	at	the	end	of	the	collection.

DSPA

Table	of	Contents

Preface	for	Digital	Signal	Processing:	A	User's	Guide

1.

Chapter	1.	Background,	Review,	and	Reference

1.1.	Discrete-Time	Signals	and	Systems

Real-	and	Complex-valued	Signals

Complex	Exponentials

Sinusoids

Unit	Sample

Unit	Step

Symbolic	Signals

Discrete-Time	Systems

1.2.	Systems	in	the	Time-Domain

1.3.	Discrete	Time	Convolution

Introduction

Convolution	and	Circular	Convolution

Convolution

Operation	Definition

http://cnx.org/content/col10599/1.5
http://creativecommons.org/licenses/by/2.0/


Definition	Motivation

Graphical	Intuition

Circular	Convolution

Definition	Motivation

Graphical	Intuition

Interactive	Element

Convolution	Summary

1.4.	Introduction	to	Fourier	Analysis

Fourier's	Daring	Leap

1.5.	Continuous	Time	Fourier	Transform	(CTFT)

Introduction

Fourier	Transform	Synthesis

Equations

CTFT	Definition	Demonstration

Example	Problems

Fourier	Transform	Summary

1.6.	Discrete-Time	Fourier	Transform	(DTFT)

1.7.	DFT	as	a	Matrix	Operation

Matrix	Review

Representing	DFT	as	Matrix	Operation

1.8.	Sampling	theory

Introduction

Why	sample?

Claude	E.	Shannon

Notation



The	Sampling	Theorem

Proof

Introduction

Proof	part	1	-	Spectral	considerations

Proof	part	II	-	Signal	reconstruction

Summary

Illustrations

Basic	examples

The	process	of	sampling

Sampling	fast	enough

Sampling	too	slowly

Reconstruction

Conclusions

Systems	view	of	sampling	and	reconstruction

Ideal	reconstruction	system

Ideal	system	including	anti-aliasing

Reconstruction	with	hold	operation

Sampling	CT	Signals:	A	Frequency	Domain	Perspective

Understanding	Sampling	in	the	Frequency	Domain

Sampling

Relating	x[n]	to	sampled	x(t)

The	DFT:	Frequency	Domain	with	a	Computer	Analysis

Introduction

Sampling	DTFT

Choosing	M



Case	1

Case	2

Discrete	Fourier	Transform	(DFT)

Interpretation

Remark	1

Remark	2

Periodicity	of	the	DFT

A	Sampling	Perspective

Inverse	DTFT	of	S(ω)

Connections

Discrete-Time	Processing	of	CT	Signals

DT	Processing	of	CT	Signals

Analysis

Summary

Note

Application:	60Hz	Noise	Removal

DSP	Solution

Sampling	Period/Rate

Digital	Filter

1.9.	Z-Transform

Difference	Equation

Introduction

General	Formulas	for	the	Difference	Equation

Difference	Equation

Conversion	to	Z-Transform



Conversion	to	Frequency	Response

Example

Solving	a	LCCDE

Direct	Method

Homogeneous	Solution

Particular	Solution

Indirect	Method

The	Z	Transform:	Definition

Basic	Definition	of	the	Z-Transform

The	Complex	Plane

Region	of	Convergence

Table	of	Common	z-Transforms

Understanding	Pole/Zero	Plots	on	the	Z-Plane

Introduction	to	Poles	and	Zeros	of	the	Z-Transform

The	Z-Plane

Examples	of	Pole/Zero	Plots

Interactive	Demonstration	of	Poles	and	Zeros

Applications	for	pole-zero	plots

Stability	and	Control	theory

Pole/Zero	Plots	and	the	Region	of	Convergence

Frequency	Response	and	Pole/Zero	Plots

Chapter	2.	Digital	Filter	Design

2.1.	Overview	of	Digital	Filter	Design

Perspective	on	FIR	filtering

2.2.	FIR	Filter	Design



Linear	Phase	Filters

Restrictions	on	h(n)	to	get	linear	phase

Window	Design	Method

L2	optimization	criterion

Window	Design	Method

Frequency	Sampling	Design	Method	for	FIR	filters

Important	Special	Case

Important	Special	Case	#2

Special	Case	2a

Comments	on	frequency-sampled	design

Extended	frequency	sample	design

Parks-McClellan	FIR	Filter	Design

Formal	Statement	of	the	L-∞	(Minimax)	Design	Problem

Outline	of	L-∞	Filter	Design

Conditions	for	L-∞	Optimality	of	a	Linear-phase	FIR	Filter

Alternation	Theorem

Optimality	Conditions	for	Even-length	Symmetric	Linear-phase	Filters

L-∞	Optimal	Lowpass	Filter	Design	Lemma

Computational	Cost

2.3.	IIR	Filter	Design

Overview	of	IIR	Filter	Design

IIR	Filter

IIR	Filter	Design	Problem

Outline	of	IIR	Filter	Design	Material

Comments	on	IIR	Filter	Design	Methods



Prototype	Analog	Filter	Design

Analog	Filter	Design

Traditional	Filter	Designs

Butterworth

Chebyshev

Inverse	Chebyshev

Elliptic	Function	Filter	(Cauer	Filter)

IIR	Digital	Filter	Design	via	the	Bilinear	Transform

Bilinear	Transformation

Prewarping

Impulse-Invariant	Design

Digital-to-Digital	Frequency	Transformations

Prony's	Method

Shank's	Method

Linear	Prediction

Statistical	Linear	Prediction

Chapter	3.	The	DFT,	FFT,	and	Practical	Spectral	Analysis

3.1.	The	Discrete	Fourier	Transform

DFT	Definition	and	Properties

DFT

IDFT

DFT	and	IDFT	properties

Periodicity

Circular	Shift

Time	Reversal



Complex	Conjugate

Circular	Convolution	Property

Multiplication	Property

Parseval's	Theorem

Symmetry

3.2.	Spectrum	Analysis

Spectrum	Analysis	Using	the	Discrete	Fourier	Transform

Discrete-Time	Fourier	Transform

Discrete	Fourier	Transform

Relationships	Between	DFT	and	DTFT

DFT	and	Discrete	Fourier	Series

DFT	and	DTFT	of	finite-length	data

DFT	as	a	DTFT	approximation

Relationship	between	continuous-time	FT	and	DFT

Zero-Padding

Effects	of	Windowing

Classical	Statistical	Spectral	Estimation

Periodogram	method

Auto-correlation-based	approach

Short	Time	Fourier	Transform

Short	Time	Fourier	Transform

Sampled	STFT

Spectrogram	Example

Effect	of	window	length	R

Effect	of	L	and	N



Effect	of	R	and	L

3.3.	Fast	Fourier	Transform	Algorithms

Overview	of	Fast	Fourier	Transform	(FFT)	Algorithms

History	of	the	FFT

Summary	of	FFT	algorithms

Running	FFT

Goertzel's	Algorithm

References

Power-of-Two	FFTs

Power-of-two	FFTs

Radix-2	Algorithms

Decimation-in-time	(DIT)	Radix-2	FFT

Decimation	in	time

Additional	Simplification

Radix-2	decimation-in-time	FFT

Example	FFT	Code

Decimation-in-Frequency	(DIF)	Radix-2	FFT

Decimation	in	frequency

Radix-2	decimation-in-frequency	algorithm

Alternate	FFT	Structures

Radix-4	FFT	Algorithms

References

Split-radix	FFT	Algorithms

References

Efficient	FFT	Algorithm	and	Programming	Tricks



Precompute	twiddle	factors

Compiler-friendly	programming

Program	in	assembly	language

Special	hardware

Effective	memory	management

Real-valued	FFTs

Special	cases

Higher-radix	algorithms

Fast	bit-reversal

Trade	additions	for	multiplications

Special	butterflies

Practical	Perspective

References

3.4.	Fast	Convolution

Fast	Circular	Convolution

Fast	Linear	Convolution

Running	Convolution

Overlap-Save	(OLS)	Method

Overlap-Add	(OLA)	Method

3.5.	Chirp-z	Transform

3.6.	FFTs	of	prime	length	and	Rader's	conversion

Rader's	Conversion

Fact	from	number	theory

Another	fact	from	number	theory

Rader's	Conversion



Winograd	minimum-multiply	convolution	and	DFT	algorithms

Winograd	Fourier	Transform	Algorithm	(WFTA)

References

3.7.	Choosing	the	Best	FFT	Algorithm

Choosing	an	FFT	length

Selecting	a	power-of-two-length	algorithm

Multi-dimensional	FFTs

Few	time	or	frequency	samples

References

Chapter	4.	Wavelets

4.1.	Time	Frequency	Analysis	and	Continuous	Wavelet	Transform

Why	Transforms?

Limitations	of	Fourier	Analysis

Time-Frequency	Uncertainty	Principle

Short-time	Fourier	Transform

Continuous	Wavelet	Transform

4.2.	Hilbert	Space	Theory

Hilbert	Space	Theory

Vector	Space

Normed	Vector	Space

Inner	Product	Space

Hilbert	Spaces

4.3.	Discrete	Wavelet	Transform

Discrete	Wavelet	Transform:	Main	Concepts

Main	Concepts



The	Haar	System	as	an	Example	of	DWT

A	Hierarchy	of	Detail	in	the	Haar	System

Haar	Approximation	at	the	kth	Coarseness	Level

The	Scaling	Equation

The	Wavelet	Scaling	Equation

Conditions	on	h[n]	and	g[n]

Values	of	g[n]	and	h[n]	for	the	Haar	System

Wavelets:	A	Countable	Orthonormal	Basis	for	the	Space	of	Square-Integrable

Functions

Filterbanks	Interpretation	of	the	Discrete	Wavelet	Transform

Initialization	of	the	Wavelet	Transform

Regularity	Conditions,	Compact	Support,	and	Daubechies'	Wavelets

References

Computing	the	Scaling	Function:	The	Cascade	Algorithm

Finite-Length	Sequences	and	the	DWT	Matrix

DWT	Implementation	using	FFTs

DWT	Applications	-	Choice	of	phi(t)

DWT	Application	-	De-noising

Chapter	5.	Multirate	Signal	Processing

5.1.	Overview	of	Multirate	Signal	Processing

Applications

Outline	of	Multirate	DSP	material

General	Rate-Changing	Procedure

References

5.2.	Interpolation,	Decimation,	and	Rate	Changing	by	Integer	Fractions



Interpolation:	by	an	integer	factor	L

Decimation:	sampling	rate	reduction	(by	an	integer	factor	M)

Rate-Changing	by	a	Rational	Fraction	L/M

5.3.	Efficient	Multirate	Filter	Structures

Interpolation

Efficient	Decimation	Structures

Efficient	L/M	rate	changers

5.4.	Filter	Design	for	Multirate	Systems

Direct	polyphase	filter	design

5.5.	Multistage	Multirate	Systems

Filter	design	for	Multi-stage	Structures

L-infinity	Tolerances	on	the	Pass	and	Stopbands

Interpolation

Efficient	Narrowband	Lowpass	Filtering

5.6.	DFT-Based	Filterbanks

Uniform	DFT	Filter	Banks

5.7.	Quadrature	Mirror	Filterbanks	(QMF)

5.8.	M-Channel	Filter	Banks

Tree-structured	filter	banks

Wavelet	decomposition

Chapter	6.	Digital	Filter	Structures	and	Quantization	Error	Analysis

6.1.	Filter	Structures

Filter	Structures

FIR	Filter	Structures

Transpose-form	FIR	filter	structures



Cascade	structures

Lattice	Structure

IIR	Filter	Structures

Direct-form	I	IIR	Filter	Structure

Direct-Form	II	IIR	Filter	Structure

Transpose-Form	IIR	Filter	Structure

IIR	Cascade	Form

Parallel	form

Other	forms

State-Variable	Representation	of	Discrete-Time	Systems

State	and	the	State-Variable	Representation

State-Variable	Transformation

Transfer	Function	and	the	State-Variable	Description

6.2.	Fixed-Point	Numbers

Fixed-Point	Number	Representation

Two's-Complement	Integer	Representation

Fractional	Fixed-Point	Number	Representation

Truncation	Error

Overflow	Error

Fixed-Point	Quantization

6.3.	Quantization	Error	Analysis

Finite-Precision	Error	Analysis

Fundamental	Assumptions	in	finite-precision	error	analysis

Assumption	#1

Assumption	#2



Summary	of	Useful	Statistical	Facts

Input	Quantization	Noise	Analysis

Quantization	Error	in	FIR	Filters

Data	Quantization

Direct-form	Structures

Transpose-form

Coefficient	Quantization

Data	Quantization	in	IIR	Filters

Roundoff	noise	analysis	in	IIR	filters

IIR	Coefficient	Quantization	Analysis

Sensitivity	analysis

Solution

Quantized	Pole	Locations

6.4.	Overflow	Problems	and	Solutions

Limit	Cycles

Large-scale	limit	cycles

Small-scale	limit	cycles

Scaling

FIR	Filter	Scaling

IIR	Filter	Scaling

References

Index

Preface	for	Digital	Signal	Processing:	A	User's	Guide

Digital	signal	processing	(DSP)	has	matured	in	the	past	few	decades	from	an	obscure	research

discipline	to	a	large	body	of	practical	methods	with	very	broad	application.	Both	practicing



engineers	and	students	specializing	in	signal	processing	need	a	clear	exposition	of	the	ideas	and

methods	comprising	the	core	signal	processing	"toolkit"	so	widely	used	today.

This	text	reflects	my	belief	that	the	skilled	practitioner	must	understand	the	key	ideas	underlying

the	algorithms	to	select,	apply,	debug,	extend,	and	innovate	most	effectively;	only	with	real

insight	can	the	engineer	make	novel	use	of	these	methods	in	the	seemingly	infinite	range	of	new

problems	and	applications.	It	also	reflects	my	belief	that	the	needs	of	the	typical	student	and	the

practicing	engineer	have	converged	in	recent	years;	as	the	discipline	of	signal	processing	has

matured,	these	core	topics	have	become	less	a	subject	of	active	research	and	more	a	set	of	tools

applied	in	the	course	of	other	research.	The	modern	student	thus	has	less	need	for	exhaustive

coverage	of	the	research	literature	and	detailed	derivations	and	proofs	as	preparation	for	their	own

research	on	these	topics,	but	greater	need	for	intuition	and	practical	guidance	in	their	most

effective	use.	The	majority	of	students	eventually	become	practicing	engineers	themselves	and

benefit	from	the	best	preparation	for	their	future	careers.

This	text	both	explains	the	principles	of	classical	signal	processing	methods	and	describes	how

they	are	used	in	engineering	practice.	It	is	thus	much	more	than	a	recipe	book;	it	describes	the

ideas	behind	the	algorithms,	gives	analyses	when	they	enhance	that	understanding,	and	includes

derivations	that	the	practitioner	may	need	to	extend	when	applying	these	methods	to	new

situations.	Analyses	or	derivations	that	are	only	of	research	interest	or	that	do	not	increase

intuitive	understanding	are	left	to	the	references.	It	is	also	much	more	than	a	theory	book;	it

contains	more	description	of	common	applications,	discussion	of	actual	implementation	issues,

comments	on	what	really	works	in	the	real	world,	and	practical	"know-how"	than	found	in	the

typical	academic	textbook.	The	choice	of	material	emphasizes	those	methods	that	have	found

widespread	practical	use;	techniques	that	have	been	the	subject	of	intense	research	but	which	are

rarely	used	in	practice	(for	example,	RLS	adaptive	filter	algorithms)	often	receive	only	limited

coverage.



The	text	assumes	a	familiarity	with	basic	signal	processing	concepts	such	as	ideal	sampling

theory,	continuous	and	discrete	Fourier	transforms,	convolution	and	filtering.	It	evolved	from	a

set	of	notes	for	a	second	signal	processing	course,	ECE	451:	Digital	Signal	Processing	II,	in

Electrical	and	Computer	Engineering	at	the	University	of	Illinois	at	Urbana-Champaign,	aimed	at

second-semester	seniors	or	first-semester	graduate	students	in	signal	processing.	Over	the	years,	it

has	been	enhanced	substantially	to	include	descriptions	of	common	applications,	sometimes	hard-

won	knowledge	about	what	actually	works	and	what	doesn't,	useful	tricks,	important	extensions

known	to	experienced	engineers	but	rarely	discussed	in	academic	texts,	and	other	relevant	"know-

how"	to	aid	the	real-world	user.	This	is	necessarily	an	ongoing	process,	and	I	continue	to	expand

and	refine	this	component	as	my	own	practical	knowledge	and	experience	grows.	The	topics	are

the	core	signal	processing	methods	that	are	used	in	the	majority	of	signal	processing	applications;

discrete	Fourier	analysis	and	FFTs,	digital	filter	design,	adaptive	filtering,	multirate	signal

processing,	and	efficient	algorithm	implementation	and	finite-precision	issues.	While	many	of

these	topics	are	covered	at	an	introductory	level	in	a	first	course,	this	text	aspires	to	cover	all	of

the	methods,	both	basic	and	advanced,	in	these	areas	which	see	widespread	use	in	practice.	I	have

also	attempted	to	make	the	individual	modules	and	sections	somewhat	self-sufficient,	so	that

those	who	seek	specific	information	on	a	single	topic	can	quickly	find	what	they	need.	Hopefully

these	aspirations	will	eventually	be	achieved;	in	the	meantime,	I	welcome	your	comments,

corrections,	and	feedback	so	that	I	can	continue	to	improve	this	text.

As	of	August	2006,	the	majority	of	modules	are	unedited	transcriptions	of	handwritten	notes	and

may	contain	typographical	errors	and	insufficient	descriptive	text	for	documents	unaccompanied

by	an	oral	lecture;	I	hope	to	have	all	of	the	modules	in	at	least	presentable	shape	by	the	end	of	the

year.

Publication	of	this	text	in	Connexions	would	have	been	impossible	without	the	help	of	many

people.	A	huge	thanks	to	the	various	permanent	and	temporary	staff	at	Connexions	is	due,	in



particular	to	those	who	converted	the	text	and	equations	from	my	original	handwritten	notes	into

CNXML	and	MathML.	My	former	and	current	faculty	colleagues	at	the	University	of	Illinois	who

have	taught	the	second	DSP	course	over	the	years	have	had	a	substantial	influence	on	the

evolution	of	the	content,	as	have	the	students	who	have	inspired	this	work	and	given	me	feedback.

I	am	very	grateful	to	my	teachers,	mentors,	colleagues,	collaborators,	and	fellow	engineers	who

have	taught	me	the	art	and	practice	of	signal	processing;	this	work	is	dedicated	to	you.

Chapter	1.	Background,	Review,	and	Reference

1.1.	Discrete-Time	Signals	and	Systems*

Mathematically,	analog	signals	are	functions	having	as	their	independent	variables	continuous

quantities,	such	as	space	and	time.	Discrete-time	signals	are	functions	defined	on	the	integers;

they	are	sequences.	As	with	analog	signals,	we	seek	ways	of	decomposing	discrete-time	signals

into	simpler	components.	Because	this	approach	leading	to	a	better	understanding	of	signal

structure,	we	can	exploit	that	structure	to	represent	information	(create	ways	of	representing

information	with	signals)	and	to	extract	information	(retrieve	the	information	thus	represented).

For	symbolic-valued	signals,	the	approach	is	different:	We	develop	a	common	representation	of

all	symbolic-valued	signals	so	that	we	can	embody	the	information	they	contain	in	a	unified	way.

From	an	information	representation	perspective,	the	most	important	issue	becomes,	for	both	real-

valued	and	symbolic-valued	signals,	efficiency:	what	is	the	most	parsimonious	and	compact	way

to	represent	information	so	that	it	can	be	extracted	later.

Real-	and	Complex-valued	Signals

A	discrete-time	signal	is	represented	symbolically	as	s(	n)	,	where	n={	…,	-1,	0,	1,	…}	.

Figure	1.1.	Cosine

The	discrete-time	cosine	signal	is	plotted	as	a	stem	plot.	Can	you	find	the	formula	for	this	signal?



We	usually	draw	discrete-time	signals	as	stem	plots	to	emphasize	the	fact	they	are	functions

defined	only	on	the	integers.	We	can	delay	a	discrete-time	signal	by	an	integer	just	as	with	analog

ones.	A	signal	delayed	by	m	samples	has	the	expression	s(	n−	m)	.

Complex	Exponentials

The	most	important	signal	is,	of	course,	the	complex	exponential	sequence.

()

s(	n)=	ⅇⅈ	2	πfn

Note	that	the	frequency	variable	f	is	dimensionless	and	that	adding	an	integer	to	the	frequency	of

the	discrete-time	complex	exponential	has	no	effect	on	the	signal's	value.

()

This	derivation	follows	because	the	complex	exponential	evaluated	at	an	integer	multiple	of

2	π	equals	one.	Thus,	we	need	only	consider	frequency	to	have	a	value	in	some	unit-length	interval.

Sinusoids

Discrete-time	sinusoids	have	the	obvious	form	s(	n)=	A	cos(2	πfn+	φ)	.	As	opposed	to	analog

complex	exponentials	and	sinusoids	that	can	have	their	frequencies	be	any	real	value,	frequencies

of	their	discrete-time	counterparts	yield	unique	waveforms	only	when	f	lies	in	the	interval

.

This	choice	of	frequency	interval	is	arbitrary;	we	can	also	choose	the	frequency	to	lie	in	the



interval	[0,	1)	.	How	to	choose	a	unit-length	interval	for	a	sinusoid's	frequency	will	become

evident	later.

Unit	Sample

The	second-most	important	discrete-time	signal	is	the	unit	sample,	which	is	defined	to	be

()

Figure	1.2.	Unit	sample

The	unit	sample.

Examination	of	a	discrete-time	signal's	plot,	like	that	of	the	cosine	signal	shown	in	Figure	1.1,

reveals	that	all	signals	consist	of	a	sequence	of	delayed	and	scaled	unit	samples.	Because	the	value

of	a	sequence	at	each	integer	m	is	denoted	by	s(	m)	and	the	unit	sample	delayed	to	occur	at	m	is

written	δ(	n−	m)	,	we	can	decompose	any	signal	as	a	sum	of	unit	samples	delayed	to	the	appropriate

location	and	scaled	by	the	signal	value.

()

This	kind	of	decomposition	is	unique	to	discrete-time	signals,	and	will	prove	useful	subsequently.

Unit	Step

The	unit	sample	in	discrete-time	is	well-defined	at	the	origin,	as	opposed	to	the	situation	with

analog	signals.

()

Symbolic	Signals

An	interesting	aspect	of	discrete-time	signals	is	that	their	values	do	not	need	to	be	real	numbers.

We	do	have	real-valued	discrete-time	signals	like	the	sinusoid,	but	we	also	have	signals	that

denote	the	sequence	of	characters	typed	on	the	keyboard.	Such	characters	certainly	aren't	real

numbers,	and	as	a	collection	of	possible	signal	values,	they	have	little	mathematical	structure

other	than	that	they	are	members	of	a	set.	More	formally,	each	element	of	the	symbolic-valued



signal	s(	n)	takes	on	one	of	the	values	{	a	1,	…,	aK}	which	comprise	the	alphabet	A	.	This	technical
terminology	does	not	mean	we	restrict	symbols	to	being	members	of	the	English	or	Greek

alphabet.	They	could	represent	keyboard	characters,	bytes	(8-bit	quantities),	integers	that	convey

daily	temperature.	Whether	controlled	by	software	or	not,	discrete-time	systems	are	ultimately

constructed	from	digital	circuits,	which	consist	entirely	of	analog	circuit	elements.	Furthermore,

the	transmission	and	reception	of	discrete-time	signals,	like	e-mail,	is	accomplished	with	analog

signals	and	systems.	Understanding	how	discrete-time	and	analog	signals	and	systems	intertwine

is	perhaps	the	main	goal	of	this	course.

Discrete-Time	Systems

Discrete-time	systems	can	act	on	discrete-time	signals	in	ways	similar	to	those	found	in	analog

signals	and	systems.	Because	of	the	role	of	software	in	discrete-time	systems,	many	more

different	systems	can	be	envisioned	and	"constructed"	with	programs	than	can	be	with	analog

signals.	In	fact,	a	special	class	of	analog	signals	can	be	converted	into	discrete-time	signals,

processed	with	software,	and	converted	back	into	an	analog	signal,	all	without	the	incursion	of

error.	For	such	signals,	systems	can	be	easily	produced	in	software,	with	equivalent	analog

realizations	difficult,	if	not	impossible,	to	design.

1.2.	Systems	in	the	Time-Domain*

A	discrete-time	signal	s(	n)	is	delayed	by	n	0	samples	when	we	write	s(	n−	n	0)	,	with	n	0>0	.

Choosing	n	0	to	be	negative	advances	the	signal	along	the	integers.	As	opposed	to	analog	delays,

discrete-time	delays	can	only	be	integer	valued.	In	the	frequency	domain,	delaying	a	signal

corresponds	to	a	linear	phase	shift	of	the	signal's	discrete-time	Fourier	transform:

(	s(	n−	n	0)	↔	ⅇ–(	ⅈ	2	πfn	0)	S(	ⅇⅈ	2	πf))	.

Linear	discrete-time	systems	have	the	superposition	property.

(1.1)

Superposition

S(	a	1	x	1(	n)+	a	2	x	2(	n))=	a	1	S(	x	1(	n))+	a	2	S(	x	2(	n))	A	discrete-time	system	is	called	shift-

http://cnx.org/content/m0006/latest/#delay


invariant	(analogous	to	time-invariant	analog	systems)	if	delaying	the	input	delays	the	corresponding
output.

(1.2)

Shift-Invariant

If	S(	x(	n))=	y(	n)	,	Then	S(	x(	n−	n	0))=	y(	n−	n	0)	We	use	the	term	shift-invariant	to	emphasize	that
delays	can	only	have	integer	values	in	discrete-time,	while	in	analog	signals,	delays	can	be	arbitrarily
valued.

We	want	to	concentrate	on	systems	that	are	both	linear	and	shift-invariant.	It	will	be	these	that

allow	us	the	full	power	of	frequency-domain	analysis	and	implementations.	Because	we	have	no

physical	constraints	in	"constructing"	such	systems,	we	need	only	a	mathematical	specification.	In

analog	systems,	the	differential	equation	specifies	the	input-output	relationship	in	the	time-

domain.	The	corresponding	discrete-time	specification	is	the	difference	equation.

(1.3)

The	Difference	Equation

y(	n)=	a	1	y(	n−1)+	…+	apy(	n−	p)+	b	0	x(	n)+	b	1	x(	n−1)+	…+	bqx(	n−	q)	Here,	the	output	signal	y(	n)
is	related	to	its	past	values	y(	n−	l)	,	l={1,	…,	p}	,	and	to	the	current	and	past	values	of	the	input	signal
x(	n)	.	The	system's	characteristics	are	determined	by	the

choices	for	the	number	of	coefficients	p	and	q	and	the	coefficients'	values	{	a	1,	…,	ap}	and

{	b	0,	b	1,	…,	bq}	.

There	is	an	asymmetry	in	the	coefficients:	where	is	a	0	?	This	coefficient	would	multiply	the

y(	n)	term	in	the	difference	equation.	We	have	essentially	divided	the	equation	by	it,	which	does	not
change	the	input-output	relationship.	We	have	thus	created	the	convention	that	a	0	is

always	one.

As	opposed	to	differential	equations,	which	only	provide	an	implicit	description	of	a	system	(we

must	somehow	solve	the	differential	equation),	difference	equations	provide	an	explicit	way	of

computing	the	output	for	any	input.	We	simply	express	the	difference	equation	by	a	program	that

calculates	each	output	from	the	previous	output	values,	and	the	current	and	previous	inputs.

http://cnx.org/content/m0007/latest/#timeinv


1.3.	Discrete	Time	Convolution*

Introduction

Convolution,	one	of	the	most	important	concepts	in	electrical	engineering,	can	be	used	to

determine	the	output	a	system	produces	for	a	given	input	signal.	It	can	be	shown	that	a	linear	time

invariant	system	is	completely	characterized	by	its	impulse	response.	The	sifting	property	of	the

discrete	time	impulse	function	tells	us	that	the	input	signal	to	a	system	can	be	represented	as	a

sum	of	scaled	and	shifted	unit	impulses.	Thus,	by	linearity,	it	would	seem	reasonable	to	compute

of	the	output	signal	as	the	sum	of	scaled	and	shifted	unit	impulse	responses.	That	is	exactly	what

the	operation	of	convolution	accomplishes.	Hence,	convolution	can	be	used	to	determine	a	linear

time	invariant	system's	output	from	knowledge	of	the	input	and	the	impulse	response.

Convolution	and	Circular	Convolution

Convolution

Operation	Definition

Discrete	time	convolution	is	an	operation	on	two	discrete	time	signals	defined	by	the	integral

(1.4)

for	all	signals	f,	g	defined	on	Z.	It	is	important	to	note	that	the	operation	of	convolution	is

commutative,	meaning	that

(1.5)

f	*	g	=	g	*	f

for	all	signals	f,	g	defined	on	Z.	Thus,	the	convolution	operation	could	have	been	just	as	easily

stated	using	the	equivalent	definition

(1.6)

for	all	signals	f,	g	defined	on	Z.	Convolution	has	several	other	important	properties	not	listed	here

but	explained	and	derived	in	a	later	module.



Definition	Motivation

The	above	operation	definition	has	been	chosen	to	be	particularly	useful	in	the	study	of	linear	time

invariant	systems.	In	order	to	see	this,	consider	a	linear	time	invariant	system	H	with	unit	impulse

response	h.	Given	a	system	input	signal	x	we	would	like	to	compute	the	system	output	signal	H(	x).

First,	we	note	that	the	input	can	be	expressed	as	the	convolution

(1.7)

by	the	sifting	property	of	the	unit	impulse	function.	By	linearity

(1.8)

Since	Hδ(	n–	k)	is	the	shifted	unit	impulse	response	h(	n–	k),	this	gives	the	result

(1.9)

Hence,	convolution	has	been	defined	such	that	the	output	of	a	linear	time	invariant	system	is	given

by	the	convolution	of	the	system	input	with	the	system	unit	impulse	response.

Graphical	Intuition

It	is	often	helpful	to	be	able	to	visualize	the	computation	of	a	convolution	in	terms	of	graphical

processes.	Consider	the	convolution	of	two	functions	f,	g	given	by

(1.10)

The	first	step	in	graphically	understanding	the	operation	of	convolution	is	to	plot	each	of	the

functions.	Next,	one	of	the	functions	must	be	selected,	and	its	plot	reflected	across	the	k=0	axis.

For	each	real	t,	that	same	function	must	be	shifted	left	by	t.	The	product	of	the	two	resulting	plots

is	then	constructed.	Finally,	the	area	under	the	resulting	curve	is	computed.



Example	1.1.

Recall	that	the	impulse	response	for	a	discrete	time	echoing	feedback	system	with	gain	a	is

(1.11)

h	(	n	)	=	an	u	(	n	)	,

and	consider	the	response	to	an	input	signal	that	is	another	exponential

(1.12)

x	(	n	)	=	bn	u	(	n	)	.

We	know	that	the	output	for	this	input	is	given	by	the	convolution	of	the	impulse	response

with	the	input	signal

(1.13)

y	(	n	)	=	x	(	n	)	*	h	(	n	)	.

We	would	like	to	compute	this	operation	by	beginning	in	a	way	that	minimizes	the	algebraic

complexity	of	the	expression.	However,	in	this	case,	each	possible	coice	is	equally	simple.

Thus,	we	would	like	to	compute

(1.14)

The	step	functions	can	be	used	to	further	simplify	this	sum.	Therefore,



(1.15)

y	(	n	)	=	0

for	n<0	and

(1.16)

for	n≥0.	Hence,	provided	ab≠1,	we	have	that

(1.17)

Circular	Convolution

Discrete	time	circular	convolution	is	an	operation	on	two	finite	length	or	periodic	discrete	time

signals	defined	by	the	integral

(1.18)

for	all	signals	f,	g	defined	on	Z[0,	N–1]	where

are	periodic	extensions	of	f	and	g.	It	is	important

to	note	that	the	operation	of	circular	convolution	is	commutative,	meaning	that

(1.19)

f	*	g	=	g	*	f

for	all	signals	f,	g	defined	on	Z[0,	N–1].	Thus,	the	circular	convolution	operation	could	have	been

just	as	easily	stated	using	the	equivalent	definition

(1.20)

for	all	signals	f,	g	defined	on	Z[0,	N–1]	where

are	periodic	extensions	of	f	and	g.	Circular

convolution	has	several	other	important	properties	not	listed	here	but	explained	and	derived	in	a

later	module.



Alternatively,	discrete	time	circular	convolution	can	be	expressed	as	the	sum	of	two	summations

given	by

(1.21)

for	all	signals	f,	g	defined	on	Z[0,	N–1].

Meaningful	examples	of	computing	discrete	time	circular	convolutions	in	the	time	domain	would

involve	complicated	algebraic	manipulations	dealing	with	the	wrap	around	behavior,	which	would

ultimately	be	more	confusing	than	helpful.	Thus,	none	will	be	provided	in	this	section.	Of	course,

example	computations	in	the	time	domain	are	easy	to	program	and	demonstrate.	However,	disrete

time	circular	convolutions	are	more	easily	computed	using	frequency	domain	tools	as	will	be

shown	in	the	discrete	time	Fourier	series	section.

Definition	Motivation

The	above	operation	definition	has	been	chosen	to	be	particularly	useful	in	the	study	of	linear	time

invariant	systems.	In	order	to	see	this,	consider	a	linear	time	invariant	system	H	with	unit	impulse

response	h.	Given	a	finite	or	periodic	system	input	signal	x	we	would	like	to	compute	the	system

output	signal	H(	x).	First,	we	note	that	the	input	can	be	expressed	as	the	circular	convolution

(1.22)

by	the	sifting	property	of	the	unit	impulse	function.	By	linearity,

(1.23)

Since	Hδ(	n–	k)	is	the	shifted	unit	impulse	response	h(	n–	k),	this	gives	the	result

(1.24)

Hence,	circular	convolution	has	been	defined	such	that	the	output	of	a	linear	time	invariant	system



is	given	by	the	convolution	of	the	system	input	with	the	system	unit	impulse	response.

Graphical	Intuition

It	is	often	helpful	to	be	able	to	visualize	the	computation	of	a	circular	convolution	in	terms	of

graphical	processes.	Consider	the	circular	convolution	of	two	finite	length	functions	f,	g	given	by

(1.25)

The	first	step	in	graphically	understanding	the	operation	of	convolution	is	to	plot	each	of	the

periodic	extensions	of	the	functions.	Next,	one	of	the	functions	must	be	selected,	and	its	plot

reflected	across	the	k=0	axis.	For	each	k∈Z[0,	N–1],	that	same	function	must	be	shifted	left	by	k.

The	product	of	the	two	resulting	plots	is	then	constructed.	Finally,	the	area	under	the	resulting

curve	on	Z[0,	N–1]	is	computed.

Interactive	Element



Figure	1.3.

Interact	(when	online)	with	the	Mathematica	CDF	demonstrating	Discrete	Linear	Convolution.	To
download,	right	click	and	save	file	as	.cdf

Convolution	Summary

Convolution,	one	of	the	most	important	concepts	in	electrical	engineering,	can	be	used	to

determine	the	output	signal	of	a	linear	time	invariant	system	for	a	given	input	signal	with

knowledge	of	the	system's	unit	impulse	response.	The	operation	of	discrete	time	convolution	is

defined	such	that	it	performs	this	function	for	infinite	length	discrete	time	signals	and	systems.

The	operation	of	discrete	time	circular	convolution	is	defined	such	that	it	performs	this	function

for	finite	length	and	periodic	discrete	time	signals.	In	each	case,	the	output	of	the	system	is	the

convolution	or	circular	convolution	of	the	input	signal	with	the	unit	impulse	response.

1.4.	Introduction	to	Fourier	Analysis*

Fourier's	Daring	Leap

Fourier	postulated	around	1807	that	any	periodic	signal	(equivalently	finite	length	signal)	can	be

built	up	as	an	infinite	linear	combination	of	harmonic	sinusoidal	waves.

i.e.	Given	the	collection

(1.26)

any

(1.27)

f	(	t	)	∈	L	2	[	0	,	T	)

can	be	approximated	arbitrarily	closely	by

(1.28)

Now,	The	issue	of	exact	convergence	did	bring	Fourier	much	criticism	from	the	French	Academy	of

http://www-groups.dcs.st-and.ac.uk/%7Ehistory/Mathematicians/Fourier.html


Science	(Laplace,	Lagrange,	Monge	and	LaCroix	comprised	the	review	committee)	for	several

years	after	its	presentation	on	1807.	It	was	not	resolved	for	also	a	century,	and	its	resolution	is

interesting	and	important	to	understand	from	a	practical	viewpoint.	See	more	in	the	section	on

Gibbs	Phenomena.

Fourier	analysis	is	fundamental	to	understanding	the	behavior	of	signals	and	systems.	This	is	a

result	of	the	fact	that	sinusoids	are	Eigenfunctions	of	linear,	time-invariant	(LTI)	systems.	This	is	to
say	that	if	we	pass	any	particular	sinusoid	through	a	LTI	system,	we	get	a	scaled	version	of

that	same	sinusoid	on	the	output.	Then,	since	Fourier	analysis	allows	us	to	redefine	the	signals	in

terms	of	sinusoids,	all	we	need	to	do	is	determine	how	any	given	system	effects	all	possible

sinusoids	(its	transfer	function)	and	we	have	a	complete	understanding	of	the	system.

Furthermore,	since	we	are	able	to	define	the	passage	of	sinusoids	through	a	system	as

multiplication	of	that	sinusoid	by	the	transfer	function	at	the	same	frequency,	we	can	convert	the

passage	of	any	signal	through	a	system	from	convolution	(in	time)	to	multiplication	(in	frequency).
These	ideas	are	what	give	Fourier	analysis	its	power.

Now,	after	hopefully	having	sold	you	on	the	value	of	this	method	of	analysis,	we	must	examine

exactly	what	we	mean	by	Fourier	analysis.	The	four	Fourier	transforms	that	comprise	this	analysis

are	the	Fourier	Series,	Continuous-Time	Fourier	Transform,	Discrete-Time	Fourier

Transform	and	Discrete	Fourier	Transform.	For	this	document,	we	will	view	the	Laplace

Transform	and	Z-Transform	as	simply	extensions	of	the	CTFT	and	DTFT	respectively.	All	of	these
transforms	act	essentially	the	same	way,	by	converting	a	signal	in	time	to	an	equivalent

signal	in	frequency	(sinusoids).	However,	depending	on	the	nature	of	a	specific	signal	i.e.	whether

it	is	finite-	or	infinite-length	and	whether	it	is	discrete-	or	continuous-time)	there	is	an	appropriate

transform	to	convert	the	signal	into	the	frequency	domain.	Below	is	a	table	of	the	four	Fourier

transforms	and	when	each	is	appropriate.	It	also	includes	the	relevant	convolution	for	the

specified	space.

Table	1.1.	Table	of	Fourier	Representations

Time

http://cnx.org/content/m10500/latest/
http://cnx.org/content/m10084/latest/
http://cnx.org/content/m0028/latest/
http://cnx.org/content/m10088/latest/
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http://cnx.org/content/m10097/latest/
http://cnx.org/content/m10108/latest/
http://cnx.org/content/m10108/latest/
http://cnx.org/content/m10108/latest/
http://cnx.org/content/m10110/latest/
http://cnx.org/content/m10110/latest/


Frequency

Transform

Convolution

Domain

Domain

Continuous-Time

Continuous-Time	Fourier	Series

L	2([0,	T))

l	2(ℤ)

Circular

Continuous-Time	Fourier

L	2(ℝ)

L	2(ℝ)

Continuous-Time	Linear

Transform

Discrete-Time	Fourier	Transform

l	2(ℤ)

L	2([0,	2	π))

Discrete-Time	Linear

Discrete	Fourier	Transform

l	2([0,	N−1])

l	2([0,	N−1])

Discrete-Time	Circular

1.5.	Continuous	Time	Fourier	Transform	(CTFT)*

Introduction



In	this	module,	we	will	derive	an	expansion	for	any	arbitrary	continuous-time	function,	and	in

doing	so,	derive	the	Continuous	Time	Fourier	Transform	(CTFT).

Since	complex	exponentials	are	eigenfunctions	of	linear	time-invariant	(LTI)	systems,

calculating	the	output	of	an	LTI	system	ℋ	given	ⅇst	as	an	input	amounts	to	simple	multiplication,

where	H(	s)∈ℂ	is	the	eigenvalue	corresponding	to	s.	As	shown	in	the	figure,	a	simple	exponential

input	would	yield	the	output

()

y(	t)=	H(	s)	ⅇst

Using	this	and	the	fact	that	ℋ	is	linear,	calculating	y(	t)	for	combinations	of	complex	exponentials

is	also	straightforward.

c	1	ⅇs	1	t+	c	2	ⅇs	2	t→	c	1	H(	s	1)	ⅇs	1	t+	c	2	H(	s	2)	ⅇs	2	t	The	action	of	H	on	an	input	such	as	those	in
the	two	equations	above	is	easy	to	explain.	ℋ

independently	scales	each	exponential	component	ⅇsnt	by	a	different	complex	number	H(	sn)∈ℂ	.

As	such,	if	we	can	write	a	function	f(	t)	as	a	combination	of	complex	exponentials	it	allows	us	to

easily	calculate	the	output	of	a	system.

Now,	we	will	look	to	use	the	power	of	complex	exponentials	to	see	how	we	may	represent

arbitrary	signals	in	terms	of	a	set	of	simpler	functions	by	superposition	of	a	number	of	complex

exponentials.	Below	we	will	present	the	Continuous-Time	Fourier	Transform	(CTFT),

commonly	referred	to	as	just	the	Fourier	Transform	(FT).	Because	the	CTFT	deals	with

nonperiodic	signals,	we	must	find	a	way	to	include	all	real	frequencies	in	the	general	equations.

For	the	CTFT	we	simply	utilize	integration	over	real	numbers	rather	than	summation	over	integers

http://cnx.org/content/m10060/latest/
http://cnx.org/content/m10500/latest/


in	order	to	express	the	aperiodic	signals.

Fourier	Transform	Synthesis

Joseph	Fourier	demonstrated	that	an	arbitrary	s(	t)	can	be	written	as	a	linear	combination	of	harmonic
complex	sinusoids

()

where

is	the	fundamental	frequency.	For	almost	all	s(	t)	of	practical	interest,	there	exists

cn	to	make	Equation	true.	If	s(	t)	is	finite	energy	(	s(	t)∈	L	2[0,	T]	),	then	the	equality	in	Equation

holds	in	the	sense	of	energy	convergence;	if	s(	t)	is	continuous,	then	Equation	holds	pointwise.

Also,	if	s(	t)	meets	some	mild	conditions	(the	Dirichlet	conditions),	then	Equation	holds	pointwise
everywhere	except	at	points	of	discontinuity.

The	cn	-	called	the	Fourier	coefficients	-	tell	us	"how	much"	of	the	sinusoid	ⅇjω	0	nt	is	in	s(	t)	.	The

formula	shows	s(	t)	as	a	sum	of	complex	exponentials,	each	of	which	is	easily	processed	by	an	LTI

system	(since	it	is	an	eigenfunction	of	every	LTI	system).	Mathematically,	it	tells	us	that	the	set

of	complex	exponentials	{	ⅇjω	0	nt	,	n∈ℤ	}	form	a	basis	for	the	space	of	T-periodic	continuous

time	functions.

http://www-groups.dcs.st-and.ac.uk/%7Ehistory/Mathematicians/Fourier.html


Equations

Now,	in	order	to	take	this	useful	tool	and	apply	it	to	arbitrary	non-periodic	signals,	we	will	have	to

delve	deeper	into	the	use	of	the	superposition	principle.	Let	sT(	t)	be	a	periodic	signal	having

period	T.	We	want	to	consider	what	happens	to	this	signal's	spectrum	as	the	period	goes	to

infinity.	We	denote	the	spectrum	for	any	assumed	value	of	the	period	by	cn(	T).	We	calculate	the

spectrum	according	to	the	Fourier	formula	for	a	periodic	signal,	known	as	the	Fourier	Series	(for

more	on	this	derivation,	see	the	section	on	Fourier	Series.)

()

where

and	where	we	have	used	a	symmetric	placement	of	the	integration	interval	about	the

origin	for	subsequent	derivational	convenience.	We	vary	the	frequency	index	n	proportionally	as

we	increase	the	period.	Define

()

making	the	corresponding	Fourier	Series

()

As	the	period	increases,	the	spectral	lines	become	closer	together,	becoming	a	continuum.

Therefore,

()

with

()

(1.29)

Continuous-Time	Fourier	Transform

(1.30)

Inverse	CTFT



Warning

It	is	not	uncommon	to	see	the	above	formula	written	slightly	different.	One	of	the	most

common	differences	is	the	way	that	the	exponential	is	written.	The	above	equations	use	the

radial	frequency	variable	Ω	in	the	exponential,	where	Ω=2	πf	,	but	it	is	also	common	to	include

the	more	explicit	expression,	ⅈ2πft	,	in	the	exponential.	Click	here	for	an	overview	of	the	notation	used
in	Connexion's	DSP	modules.

Example	1.2.

We	know	from	Euler's	formula	that

CTFT	Definition	Demonstration

Figure	1.4.

Interact	(when	online)	with	a	Mathematica	CDF	demonstrating	Continuous	Time	Fourier	Transform.	To
Download,	right-click	and

save	as	.cdf.

Example	Problems

Exercise	1.

Find	the	Fourier	Transform	(CTFT)	of	the	function

http://cnx.org/content/m10161/latest/


()

In	order	to	calculate	the	Fourier	transform,	all	we	need	to	use	is	Equation	1.29,	complex

exponentials,	and	basic	calculus.

()

()

Exercise	2.

Find	the	inverse	Fourier	transform	of	the	ideal	lowpass	filter	defined	by

()

Here	we	will	use	Equation	1.30	to	find	the	inverse	FT	given	that	t≠0	.

()

()

Fourier	Transform	Summary

http://cnx.org/content/m10060/latest/
http://cnx.org/content/m10060/latest/
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Because	complex	exponentials	are	eigenfunctions	of	LTI	systems,	it	is	often	useful	to	represent

signals	using	a	set	of	complex	exponentials	as	a	basis.	The	continuous	time	Fourier	series

synthesis	formula	expresses	a	continuous	time,	periodic	function	as	the	sum	of	continuous	time,

discrete	frequency	complex	exponentials.

()

The	continuous	time	Fourier	series	analysis	formula	gives	the	coefficients	of	the	Fourier	series

expansion.

()

In	both	of	these	equations

is	the	fundamental	frequency.

1.6.	Discrete-Time	Fourier	Transform	(DTFT)*

The	Fourier	transform	of	the	discrete-time	signal	s(	n)	is	defined	to	be



()

Frequency	here	has	no	units.	As	should	be	expected,	this	definition	is	linear,	with	the	transform	of

a	sum	of	signals	equaling	the	sum	of	their	transforms.	Real-valued	signals	have	conjugate-

symmetric	spectra:

.

Exercise	3.

A	special	property	of	the	discrete-time	Fourier	transform	is	that	it	is	periodic	with	period	one:

S(	ⅇⅈ	2	π(	f+1))=	S(	ⅇⅈ	2	πf)	.	Derive	this	property	from	the	definition	of	the	DTFT.

(1.31)

Because	of	this	periodicity,	we	need	only	plot	the	spectrum	over	one	period	to	understand

completely	the	spectrum's	structure;	typically,	we	plot	the	spectrum	over	the	frequency	range	.

When	the	signal	is	real-valued,	we	can	further	simplify	our	plotting	chores	by	showing	the

spectrum	only	over	;	the	spectrum	at	negative	frequencies	can	be	derived	from	positive-frequency

spectral	values.

When	we	obtain	the	discrete-time	signal	via	sampling	an	analog	signal,	the	Nyquist	frequency

corresponds	to	the	discrete-time	frequency	.	To	show	this,	note	that	a	sinusoid	having	a

frequency	equal	to	the	Nyquist	frequency

has	a	sampled	waveform	that	equals

The	exponential	in	the	DTFT	at	frequency	equals

,

meaning	that	discrete-time	frequency	equals	analog	frequency	multiplied	by	the	sampling	interval

()

fD=	fATs

fD	and	fA	represent	discrete-time	and	analog	frequency	variables,	respectively.	The	aliasing	figure

provides	another	way	of	deriving	this	result.	As	the	duration	of	each	pulse	in	the	periodic

http://cnx.org/content/m0050/latest/#para1
http://cnx.org/content/m0050/latest/#alias


sampling	signal	pT	(	t)	narrows,	the	amplitudes	of	the	signal's	spectral	repetitions,	which	are

s

governed	by	the	Fourier	series	coefficients	of	pT	(	t)	,	become	increasingly	equal.	Examination	of	s

the	periodic	pulse	signal	reveals	that	as	Δ	decreases,	the	value	of	c	0	,	the	largest	Fourier	coefficient,
decreases	to	zero:

.	Thus,	to	maintain	a	mathematically	viable	Sampling

Theorem,	the	amplitude	A	must	increase	as	,	becoming	infinitely	large	as	the	pulse	duration

decreases.	Practical	systems	use	a	small	value	of	Δ,	say	0.1	·Ts	and	use	amplifiers	to	rescale	the

signal.	Thus,	the	sampled	signal's	spectrum	becomes	periodic	with	period	.	Thus,	the	Nyquist

http://cnx.org/content/m0042/latest/#eqn2
http://cnx.org/content/m0042/latest/#pps


frequency

corresponds	to	the	frequency	.

Example	1.3.

Let's	compute	the	discrete-time	Fourier	transform	of	the	exponentially	decaying	sequence

s(	n)=	anu(	n)	,	where	u(	n)	is	the	unit-step	sequence.	Simply	plugging	the	signal's	expression	into	the
Fourier	transform	formula,

(1.32)

This	sum	is	a	special	case	of	the	geometric	series.

()

Thus,	as	long	as	|	a|<1	,	we	have	our	Fourier	transform.

(1.33)



Using	Euler's	relation,	we	can	express	the	magnitude	and	phase	of	this	spectrum.

(1.34)

(1.35)

No	matter	what	value	of	a	we	choose,	the	above	formulae	clearly	demonstrate	the	periodic

nature	of	the	spectra	of	discrete-time	signals.	Figure	1.5	shows	indeed	that	the	spectrum	is	a

periodic	function.	We	need	only	consider	the	spectrum	between

and	to	unambiguously

define	it.	When	a>0	,	we	have	a	lowpass	spectrum—the	spectrum	diminishes	as	frequency

increases	from	0	to	—with	increasing	a	leading	to	a	greater	low	frequency	content;	for	a<0	,

we	have	a	highpass	spectrum	(Figure	1.6).



Figure	1.5.	Spectrum	of	exponential	signal

The	spectrum	of	the	exponential	signal	(	a=0.5)	is	shown	over	the	frequency	range	[-2,	2],	clearly
demonstrating	the	periodicity	of	all	discrete-time	spectra.	The	angle	has	units	of	degrees.

Figure	1.6.	Spectra	of	exponential	signals

The	spectra	of	several	exponential	signals	are	shown.	What	is	the	apparent	relationship	between	the
spectra	for	a=0.5	and	a=–0.5?

Example	1.4.

Analogous	to	the	analog	pulse	signal,	let's	find	the	spectrum	of	the	length-	N	pulse	sequence.

(1.36)

The	Fourier	transform	of	this	sequence	has	the	form	of	a	truncated	geometric	series.

(1.37)

For	the	so-called	finite	geometric	series,	we	know	that

()

for	all	values	of	α.



Exercise	4.

Derive	this	formula	for	the	finite	geometric	series	sum.	The	"trick"	is	to	consider	the	difference

between	the	series'	sum	and	the	sum	of	the	series	multiplied	by	α.

which,	after	manipulation,	yields	the	geometric	sum	formula.

Applying	this	result	yields	(Figure	1.7.)

()

The	ratio	of	sine	functions	has	the	generic	form	of

,	which	is	known	as	the	discrete-time

sinc	function	dsinc(	x)	.	Thus,	our	transform	can	be	concisely	expressed	as

S(	ⅇⅈ	2	πf)=	ⅇ–(	ⅈπf(	N−1))dsinc(	πf)	.	The	discrete-time	pulse's	spectrum	contains	many	ripples,	the
number	of	which	increase	with	N,	the	pulse's	duration.

Figure	1.7.	Spectrum	of	length-ten	pulse

The	spectrum	of	a	length-ten	pulse	is	shown.	Can	you	explain	the	rather	complicated	appearance	of	the
phase?

The	inverse	discrete-time	Fourier	transform	is	easily	derived	from	the	following	relationship:

()

Therefore,	we	find	that



()

The	Fourier	transform	pairs	in	discrete-time	are

()

The	properties	of	the	discrete-time	Fourier	transform	mirror	those	of	the	analog	Fourier

transform.	The	DTFT	properties	table	shows	similarities	and	differences.	One	important	common
property	is	Parseval's	Theorem.

()

To	show	this	important	property,	we	simply	substitute	the	Fourier	transform	expression	into	the

frequency-domain	expression	for	power.

()

Using	the	orthogonality	relation,	the	integral	equals	δ(	m−	n)	,	where	δ(	n)	is	the	unit	sample.

Thus,	the	double	sum	collapses	into	a	single	sum	because	nonzero	values	occur	only	when	n=	m,

giving	Parseval's	Theorem	as	a	result.	We	term

the	energy	in	the	discrete-time	signal

s(	n)	in	spite	of	the	fact	that	discrete-time	signals	don't	consume	(or	produce	for	that	matter)

energy.	This	terminology	is	a	carry-over	from	the	analog	world.

Exercise	5.

Suppose	we	obtained	our	discrete-time	signal	from	values	of	the	product	s(	t)	p	Ts	(	t)	,	where	the
duration	of	the	component	pulses	in	p	Ts	(	t)	is	Δ.	How	is	the	discrete-time	signal	energy	related	to	the
total	energy	contained	in	s(	t)	?	Assume	the	signal	is	bandlimited	and	that	the	sampling	rate

http://cnx.org/content/m0506/latest/


was	chosen	appropriate	to	the	Sampling	Theorem's	conditions.

If	the	sampling	frequency	exceeds	the	Nyquist	frequency,	the	spectrum	of	the	samples	equals	the

analog	spectrum,	but	over	the	normalized	analog	frequency	fT	.	Thus,	the	energy	in	the	sampled

signal	equals	the	original	signal's	energy	multiplied	by	T.

1.7.	DFT	as	a	Matrix	Operation*

Matrix	Review

Recall:

Vectors	in	ℝ	N	:

Vectors	in	ℂ	N	:



Transposition:

1.	transpose:

2.	conjugate:

Inner	product:

1.	real:

2.	complex:

Matrix	Multiplication:

Matrix	Transposition:

Matrix	transposition	involved	simply

swapping	the	rows	with	columns.

The	above	equation	is	Hermitian	transpose.

[AT]	kn=A	nk

http://cnx.org/content/m10755/latest/


Representing	DFT	as	Matrix	Operation

Now	let's	represent	the	DFT	in	vector-matrix	notation.

Here	x	is	the

vector	of	time	samples	and	X	is	the	vector	of	DFT	coefficients.	How	are	x	and	X	related:

where

so	X=	Wx	where	X	is	the	DFT	vector,	W	is	the	matrix

and	x	the	time	domain	vector.

IDFT:

where

is	the	matrix	Hermitian	transpose.	So,

where	x	is	the	time	vector,

is	the	inverse	DFT	matrix,	and	X	is	the	DFT	vector.

1.8.	Sampling	theory

Introduction*

Contents	of	Sampling	chapter

Introduction(Current	module)

Proof

Illustrations

Matlab	Example

Hold	operation

http://cnx.org/content/m10249/latest/
http://cnx.org/content/m11549/latest/
http://cnx.org/content/m11458/latest/


System	view

Aliasing	applet

Exercises

Table	of	formulas

Why	sample?

This	section	introduces	sampling.	Sampling	is	the	necessary	fundament	for	all	digital	signal

processing	and	communication.	Sampling	can	be	defined	as	the	process	of	measuring	an	analog

signal	at	distinct	points.

Digital	representation	of	analog	signals	offers	advantages	in	terms	of

robustness	towards	noise,	meaning	we	can	send	more	bits/s

use	of	flexible	processing	equipment,	in	particular	the	computer

more	reliable	processing	equipment

easier	to	adapt	complex	algorithms

Claude	E.	Shannon

Figure	1.8.

Claude	Elwood	Shannon	(1916-2001)

Claude	Shannon	has	been	called	the	father	of	information	theory,	mainly	due	to	his	landmark	papers
on	the	"Mathematical	theory	of	communication"	.	Harry	Nyquist	was	the	first	to	state	the	sampling
theorem	in	1928,	but	it	was	not	proven	until	Shannon	proved	it	21	years	later	in	the

paper	"Communications	in	the	presence	of	noise"	.

http://cnx.org/content/m11448/latest/
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http://cnx.org/content/m11450/latest/
http://www.research.att.com/%7Enjas/doc/ces5.html
http://cm.bell-labs.com/cm/ms/what/shannonday/shannon1948.pdf
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Notation

In	this	chapter	we	will	be	using	the	following	notation

Original	analog	signal	x(	t)

Sampling	frequency	Fs

Sampling	interval	Ts	(Note	that:

)

Sampled	signal	xs(	n)	.	(Note	that	xs(	n)=	x(	nTs)	)

Real	angular	frequency	Ω

Digital	angular	frequency	ω.	(Note	that:	ω=	ΩTs	)

The	Sampling	Theorem

The	Sampling	theorem

When	sampling	an	analog	signal	the	sampling	frequency	must	be	greater	than	twice	the

highest	frequency	component	of	the	analog	signal	to	be	able	to	reconstruct	the	original	signal

from	the	sampled	version.

Finished?	Have	at	look	at:	Proof;	Illustrations;	Matlab	Example;	Aliasing	applet;	Hold

operation;	System	view;	Exercises

Proof*

Sampling	theorem

In	order	to	recover	the	signal	x(	t)	from	it's	samples	exactly,	it	is	necessary	to	sample	x(	t)	at	a	rate
greater	than	twice	it's	highest	frequency	component.

Introduction

As	mentioned	earlier,	sampling	is	the	necessary	fundament	when	we	want	to	apply	digital	signal
processing	on	analog	signals.

Here	we	present	the	proof	of	the	sampling	theorem.	The	proof	is	divided	in	two.	First	we	find	an

expression	for	the	spectrum	of	the	signal	resulting	from	sampling	the	original	signal	x(	t).	Next	we

show	that	the	signal	x(	t)	can	be	recovered	from	the	samples.	Often	it	is	easier	using	the	frequency

http://cnx.org/content/m11458/latest/
http://cnx.org/content/m11458/latest/
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http://cnx.org/content/m11549/latest/
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http://cnx.org/content/m11458/latest/


domain	when	carrying	out	a	proof,	and	this	is	also	the	case	here.

Key	points	in	the	proof

We	find	an	equation	for	the	spectrum	of	the	sampled	signal

We	find	a	simple	method	to	reconstruct	the	original	signal

The	sampled	signal	has	a	periodic	spectrum...

The	sampled	signal	has	a	periodic	spectrum...

...and	the	period	is	2π	Fs

Proof	part	1	-	Spectral	considerations

By	sampling	x(	t)	every	Ts	second	we	obtain	xs(	n).	The	inverse	fourier	transform	of	this	time

discrete	signal	is

()

For	convenience	we	express	the	equation	in	terms	of	the	real	angular	frequency	Ω	using	ω=	ΩTs	.

http://cnx.org/content/m11476/latest/
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We	then	obtain

()

The	inverse	fourier	transform	of	a	continuous	signal	is

()

From	this	equation	we	find	an	expression	for	x	(	nTs)

()

To	account	for	the	difference	in	region	of	integration	we	split	the	integration	in	Equation	into

subintervals	of	length

and	then	take	the	sum	over	the	resulting	integrals	to	obtain	the	complete

area.

()

Then	we	change	the	integration	variable,	setting

()

We	obtain	the	final	form	by	observing	that	ⅇⅈ	2π	kn=	1	,	reinserting	η=	Ω	and	multiplying	by



()

To	make	xs(	n)=	x(	nTs)	for	all	values	of	n,	the	integrands	in	Equation	and	Equation	have	to	agreee,	that
is

()

This	is	a	central	result.	We	see	that	the	digital	spectrum	consists	of	a	sum	of	shifted	versions	of

the	original,	analog	spectrum.	Observe	the	periodicity!

We	can	also	express	this	relation	in	terms	of	the	digital	angular	frequency	ω=	ΩTs

()

This	concludes	the	first	part	of	the	proof.	Now	we	want	to	find	a	reconstruction	formula,	so	that

we	can	recover	x(	t)	from	xs(	n).

Proof	part	II	-	Signal	reconstruction

For	a	bandlimited	signal	the	inverse	fourier	transform	is

()

In	the	interval	we	are	integrating	we	have:

.	Substituting	this	relation	into	Equation

we	get

()

Using	the	DTFT	relation	for	Xs(	ⅇⅈΩTs)	we	have

()

Interchanging	integration	and	summation	(under	the	assumption	of	convergence)	leads	to

http://cnx.org/content/m11450/latest/


()

Finally	we	perform	the	integration	and	arrive	at	the	important	reconstruction	formula

()

(Thanks	to	R.Loos	for	pointing	out	an	error	in	the	proof.)

Summary

Spectrum	sampled	signal

Reconstruction	formula

Go	to	Introduction;	Illustrations;	Matlab	Example;	Hold	operation;	Aliasing	applet;	System

view;	Exercises	?

Illustrations*

In	this	module	we	illustrate	the	processes	involved	in	sampling	and	reconstruction.	To	see	how	all

these	processes	work	together	as	a	whole,	take	a	look	at	the	system	view.	In	Sampling	and

reconstruction	with	Matlab	we	provide	a	Matlab	script	for	download.	The	matlab	script	shows	the
process	of	sampling	and	reconstruction	live.

Basic	examples

Example	1.5.

To	sample	an	analog	signal	with	3000	Hz	as	the	highest	frequency	component	requires

sampling	at	6000	Hz	or	above.
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Example	1.6.

The	sampling	theorem	can	also	be	applied	in	two	dimensions,	i.e.	for	image	analysis.	A	2D

sampling	theorem	has	a	simple	physical	interpretation	in	image	analysis:	Choose	the	sampling

interval	such	that	it	is	less	than	or	equal	to	half	of	the	smallest	interesting	detail	in	the	image.

The	process	of	sampling

We	start	off	with	an	analog	signal.	This	can	for	example	be	the	sound	coming	from	your	stereo	at

home	or	your	friend	talking.

The	signal	is	then	sampled	uniformly.	Uniform	sampling	implies	that	we	sample	every	Ts	seconds.

In	Figure	1.9	we	see	an	analog	signal.	The	analog	signal	has	been	sampled	at	times	t=	nTs	.

Figure	1.9.

Analog	signal,	samples	are	marked	with	dots.

In	signal	processing	it	is	often	more	convenient	and	easier	to	work	in	the	frequency	domain.	So

let's	look	at	at	the	signal	in	frequency	domain,	Figure	1.10.	For	illustration	purposes	we	take	the

frequency	content	of	the	signal	as	a	triangle.	(If	you	Fourier	transform	the	signal	in	Figure	1.9	you	will
not	get	such	a	nice	triangle.)



Figure	1.10.

The	spectrum	X(	ⅈΩ)	.

Notice	that	the	signal	in	Figure	1.10	is	bandlimited.	We	can	see	that	the	signal	is	bandlimited

because	X(	ⅈΩ)	is	zero	outside	the	interval	[–	Ωg,	Ωg]	.	Equivalentely	we	can	state	that	the	signal	has	no
angular	frequencies	above	Ωg,	corresponding	to	no	frequencies	above

.

Now	let's	take	a	look	at	the	sampled	signal	in	the	frequency	domain.	While	proving	the	sampling
theorem	we	found	the	the	spectrum	of	the	sampled	signal	consists	of	a	sum	of	shifted	versions	of

the	analog	spectrum.	Mathematically	this	is	described	by	the	following	equation:

()

Sampling	fast	enough

In	Figure	1.11	we	show	the	result	of	sampling	x(	t)	according	to	the	sampling	theorem.	This	means
that	when	sampling	the	signal	in	Figure	1.9/Figure	1.10	we	use	Fs≥2	Fg	.	Observe	in

Figure	1.11	that	we	have	the	same	spectrum	as	in	Figure	1.10	for	Ω∈[-Ω	g,	Ωg]	,	except	for	the	scaling
factor	.	This	is	a	consequence	of	the	sampling	frequency.	As	mentioned	in	the	proof	the	spectrum	of	the
sampled	signal	is	periodic	with	period

.



Figure	1.11.

The	spectrum	Xs.	Sampling	frequency	is	OK.

So	now	we	are,	according	to	the	sample	theorem,	able	to	reconstruct	the	original	signal	exactly.

How	we	can	do	this	will	be	explored	further	down	under	reconstruction.	But	first	we	will	take	a	look	at
what	happens	when	we	sample	too	slowly.

Sampling	too	slowly

If	we	sample	x(	t)	too	slowly,	that	is	Fs<2	Fg	,	we	will	get	overlap	between	the	repeated	spectra,	see

Figure	1.12.	According	to	Equation	the	resulting	spectra	is	the	sum	of	these.	This	overlap	gives	rise	to
the	concept	of	aliasing.

Aliasing

If	the	sampling	frequency	is	less	than	twice	the	highest	frequency	component,	then

frequencies	in	the	original	signal	that	are	above	half	the	sampling	rate	will	be	"aliased"	and

will	appear	in	the	resulting	signal	as	lower	frequencies.

The	consequence	of	aliasing	is	that	we	cannot	recover	the	original	signal,	so	aliasing	has	to	be

avoided.	Sampling	too	slowly	will	produce	a	sequence	xs(	n)	that	could	have	orginated	from	a

number	of	signals.	So	there	is	no	chance	of	recovering	the	original	signal.	To	learn	more	about

aliasing,	take	a	look	at	this	module.	(Includes	an	applet	for	demonstration!)	Figure	1.12.

The	spectrum	Xs.	Sampling	frequency	is	too	low.

To	avoid	aliasing	we	have	to	sample	fast	enough.	But	if	we	can't	sample	fast	enough	(possibly	due

to	costs)	we	can	include	an	Anti-Aliasing	filter.	This	will	not	able	us	to	get	an	exact	reconstruction

but	can	still	be	a	good	solution.

Anti-Aliasing	filter

Typically	a	low-pass	filter	that	is	applied	before	sampling	to	ensure	that	no	components	with

http://cnx.org/content/m11448/latest/


frequencies	greater	than	half	the	sample	frequency	remain.

Example	1.7.

The	stagecoach	effect

In	older	western	movies	you	can	observe	aliasing	on	a	stagecoach	when	it	starts	to	roll.	At

first	the	spokes	appear	to	turn	forward,	but	as	the	stagecoach	increase	its	speed	the	spokes

appear	to	turn	backward.	This	comes	from	the	fact	that	the	sampling	rate,	here	the	number	of

frames	per	second,	is	too	low.	We	can	view	each	frame	as	a	sample	of	an	image	that	is

changing	continuously	in	time.	(Applet	illustrating	the	stagecoach	effect)	Reconstruction

Given	the	signal	in	Figure	1.11	we	want	to	recover	the	original	signal,	but	the	question	is	how?

When	there	is	no	overlapping	in	the	spectrum,	the	spectral	component	given	by	k=0	(see

Equation),is	equal	to	the	spectrum	of	the	analog	signal.	This	offers	an	oppurtunity	to	use	a	simple

reconstruction	process.	Remember	what	you	have	learned	about	filtering.	What	we	want	is	to

change	signal	in	Figure	1.11	into	that	of	Figure	1.10.	To	achieve	this	we	have	to	remove	all	the	extra
components	generated	in	the	sampling	process.	To	remove	the	extra	components	we	apply

an	ideal	analog	low-pass	filter	as	shown	in	Figure	1.13	As	we	see	the	ideal	filter	is	rectangular	in

the	frequency	domain.	A	rectangle	in	the	frequency	domain	corresponds	to	a	sinc	function	in	time
domain	(and	vice	versa).

Figure	1.13.

H(	ⅈΩ)	The	ideal	reconstruction	filter.

Then	we	have	reconstructed	the	original	spectrum,	and	as	we	know	if	two	signals	are	identical	in

the	frequency	domain,	they	are	also	identical	in	the	time	domain.	End	of	reconstruction.

Conclusions

The	Shannon	sampling	theorem	requires	that	the	input	signal	prior	to	sampling	is	band-limited	to

http://flowers.ofthenight.org/wagonWheel/wagonWheel.html
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at	most	half	the	sampling	frequency.	Under	this	condition	the	samples	give	an	exact	signal

representation.	It	is	truly	remarkable	that	such	a	broad	and	useful	class	signals	can	be	represented

that	easily!

We	also	looked	into	the	problem	of	reconstructing	the	signals	form	its	samples.	Again	the

simplicity	of	the	principle	is	striking:	linear	filtering	by	an	ideal	low-pass	filter	will	do	the	job.

However,	the	ideal	filter	is	impossible	to	create,	but	that	is	another	story...

Go	to?	Introduction;	Proof;	Illustrations;	Matlab	Example;	Aliasing	applet;	Hold	operation;

System	view;	Exercises

Systems	view	of	sampling	and	reconstruction*

Ideal	reconstruction	system

Figure	1.14	shows	the	ideal	reconstruction	system	based	on	the	results	of	the	Sampling	theorem

proof.

Figure	1.14	consists	of	a	sampling	device	which	produces	a	time-discrete	sequence	xs(	n).	The
reconstruction	filter,	h(	t),	is	an	ideal	analog	sinc	filter,	with

.	We	can't	apply	the	time-

http://cnx.org/content/m11549/latest/
http://cnx.org/content/m11448/latest/
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discrete	sequence	xs(	n)	directly	to	the	analog	filter	h(	t).	To	solve	this	problem	we	turn	the

sequence	into	an	analog	signal	using	delta	functions.	Thus	we	write

.

Figure	1.14.

Ideal	reconstruction	system

But	when	will	the	system	produce	an	output

?	According	to	the	sampling	theorem	we

have

when	the	sampling	frequency,	Fs,	is	at	least	twice	the	highest	frequency	component

of	x(	t).

Ideal	system	including	anti-aliasing

To	be	sure	that	the	reconstructed	signal	is	free	of	aliasing	it	is	customary	to	apply	a	lowpass	filter,

an	anti-aliasing	filter,	before	sampling	as	shown	in	Figure	1.15.

Figure	1.15.

Ideal	reconstruction	system	with	anti-aliasing	filter

Again	we	ask	the	question	of	when	the	system	will	produce	an	output

?	If	the	signal	is

entirely	confined	within	the	passband	of	the	lowpass	filter	we	will	get	perfect	reconstruction	if	Fs

is	high	enough.

But	if	the	anti-aliasing	filter	removes	the	"higher"	frequencies,	(which	in	fact	is	the	job	of	the

anti-aliasing	filter),	we	will	never	be	able	to	exactly	reconstruct	the	original	signal,	s(	t).	If	we	sample

http://cnx.org/content/m11450/latest/


fast	enough	we	can	reconstruct	x(	t),	which	in	most	cases	is	satisfying.

The	reconstructed	signal,

,	will	not	have	aliased	frequencies.	This	is	essential	for	further	use

of	the	signal.

Reconstruction	with	hold	operation

To	make	our	reconstruction	system	realizable	there	are	many	things	to	look	into.	Among	them	are

the	fact	that	any	practical	reconstruction	system	must	input	finite	length	pulses	into	the

reconstruction	filter.	This	can	be	accomplished	by	the	hold	operation.	To	alleviate	the	distortion	caused
by	the	hold	opeator	we	apply	the	output	from	the	hold	device	to	a	compensator.	The

compensation	can	be	as	accurate	as	we	wish,	this	is	cost	and	application	consideration.

Figure	1.16.

More	practical	reconstruction	system	with	a	hold	component

By	the	use	of	the	hold	component	the	reconstruction	will	not	be	exact,	but	as	mentioned	above	we

can	get	as	close	as	we	want.

Introduction;	Proof;	Illustrations;	Matlab	example;	Hold	operation;	Aliasing	applet;

Exercises

Sampling	CT	Signals:	A	Frequency	Domain	Perspective*

Understanding	Sampling	in	the	Frequency	Domain

We	want	to	relate	xc(	t)	directly	to	x[	n]	.	Compute	the	CTFT	of

http://cnx.org/content/m11458/latest/
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()

where	ω≡	ΩT	and	X(	ω)	is	the	DTFT	of	x[	n]	.

Recall

()

where	this	last	part	is	2	π	-periodic.

Sampling

Figure	1.17.

Example	1.8.	Speech

Speech	is	intelligible	if	bandlimited	by	a	CT	lowpass	filter	to	the	band	±4	kHz.	We	can



sample	speech	as	slowly	as	_____?

Figure	1.18.

Figure	1.19.

Note	that	there	is	no	mention	of	T	or	Ωs	!

Relating	x[n]	to	sampled	x(t)

Recall	the	following	equality:

Figure	1.20.



Recall	the	CTFT	relation:

()

where	α	is	a	scaling	of	time	and	is	a	scaling	in	frequency.

()

Xs(	Ω)≡	X(	ΩT)

The	DFT:	Frequency	Domain	with	a	Computer	Analysis*

Introduction

We	just	covered	ideal	(and	non-ideal)	(time)	sampling	of	CT	signals.	This	enabled	DT	signal

processing	solutions	for	CT	applications	(Figure	1.21):

Figure	1.21.

Much	of	the	theoretical	analysis	of	such	systems	relied	on	frequency	domain	representations.	How

do	we	carry	out	these	frequency	domain	analysis	on	the	computer?	Recall	the	following

relationships:

where	ω	and	Ω	are	continuous	frequency	variables.

Sampling	DTFT

Consider	the	DTFT	of	a	discrete-time	(DT)	signal	x[	n]	.	Assume	x[	n]	is	of	finite	duration	N	(	i.e.	,	an
N-point	signal).

()

where	X(	ω)	is	the	continuous	function	that	is	indexed	by	the	real-valued	parameter	–	π≤	ω≤	π	.	The
other	function,	x[	n]	,	is	a	discrete	function	that	is	indexed	by	integers.

We	want	to	work	with	X(	ω)	on	a	computer.	Why	not	just	sample	X(	ω)	?



()

In	Equation	we	sampled	at

where	k={0,	1,	…,	N−1}	and	X[	k]	for	k={0,	…,	N−1}	is	called

the	Discrete	Fourier	Transform	(DFT)	of	x[	n]	.

Example	1.9.

Figure	1.22.	Finite	Duration	DT	Signal

The	DTFT	of	the	image	in	Figure	1.22	is	written	as	follows:

()

where	ω	is	any	2	π	-interval,	for	example	–	π≤	ω≤	π	.

Figure	1.23.	Sample	X(ω)

where	again	we	sampled	at

where	k={0,	1,	…,	M−1}	.	For	example,	we	take	M=10	.	In

the	following	section	we	will	discuss	in	more	detail	how	we	should	choose	M,	the	number	of	samples	in
the	2	π	interval.

(This	is	precisely	how	we	would	plot	X(	ω)	in	Matlab.)

Choosing	M

Case	1

Given	N	(length	of	x[	n]	),	choose	(	M	≫	N)	to	obtain	a	dense	sampling	of	the	DTFT	(Figure	1.24):



Figure	1.24.

Case	2

Choose	M	as	small	as	possible	(to	minimize	the	amount	of	computation).

In	general,	we	require	M≥	N	in	order	to	represent	all	information	in	x[	n]	,	n={0,	…,	N−1}	Let's
concentrate	on	M=	N	:

for	n={0,	…,	N−1}	and	k={0,	…,	N−1}	numbers	↔	N	numbers

Discrete	Fourier	Transform	(DFT)

Define

()

where	N=length(	x[	n])	and	k={0,	…,	N−1}	.	In	this	case,	M=	N	.

(1.38)

DFT

(1.39)

Inverse	DFT	(IDFT)

Interpretation

Represent	x[	n]	in	terms	of	a	sum	of	N	complex	sinusoids	of	amplitudes	X[	k]	and	frequencies	Think

Fourier	Series	with	fundamental	frequency

http://cnx.org/content/m10060/latest/


Remark	1

IDFT	treats	x[	n]	as	though	it	were	N-periodic.

()

where	n∈{0,	…,	N−1}

Exercise	6.

What	about	other	values	of	n?

x[	n+	N]=???

Remark	2

Proof	that	the	IDFT	inverts	the	DFT	for	n∈{0,	…,	N−1}

()

Example	1.10.	Computing	DFT

Given	the	following	discrete-time	signal	(Figure	1.25)	with	N=4	,	we	will	compute	the	DFT

using	two	different	methods	(the	DFT	Formula	and	Sample	DTFT):



Figure	1.25.

1.	DFT	Formula

()

Using	the	above	equation,	we	can	solve	and	get	the	following	results:

x[0]=4	x[1]=0	x[2]=0	x[3]=0

2.	Sample	DTFT.	Using	the	same	figure,	Figure	1.25,	we	will	take	the	DTFT	of	the	signal	and

get	the	following	equations:

()

Our	sample	points	will	be:

where	k={0,	1,	2,	3}	(Figure	1.26).

Figure	1.26.

Periodicity	of	the	DFT



DFT	X[	k]	consists	of	samples	of	DTFT,	so	X(	ω)	,	a	2	π	-periodic	DTFT	signal,	can	be	converted	to	X[
k]	,	an	N-periodic	DFT.

()

where

is	an	N-periodic	basis	function	(See	Figure	1.27).

Figure	1.27.

Also,	recall,

()

Example	1.11.	Illustration

Figure	1.28.

When	we	deal	with	the	DFT,	we	need	to	remember	that,	in	effect,	this	treats	the	signal	as

an	N-periodic	sequence.

A	Sampling	Perspective

Think	of	sampling	the	continuous	function	X(	ω)	,	as	depicted	in	Figure	1.29.	S(	ω)	will	represent	the
sampling	function	applied	to	X(	ω)	and	is	illustrated	in	Figure	1.29	as	well.	This	will	result	in	our
discrete-time	sequence,	X[	k]	.



Figure	1.29.

Recall

Remember	the	multiplication	in	the	frequency	domain	is	equal	to	convolution	in	the	time

domain!

Inverse	DTFT	of	S(ω)

()

Given	the	above	equation,	we	can	take	the	DTFT	and	get	the	following	equation:

()

Exercise	7.

Why	does	Equation	equal	S[	n]	?

S[	n]	is	N-periodic,	so	it	has	the	following	Fourier	Series:

()

http://cnx.org/content/m10496/latest/


()

where	the	DTFT	of	the	exponential	in	the	above	equation	is	equal	to

.

So,	in	the	time-domain	we	have	(Figure	1.30):

Figure	1.30.

Connections

Figure	1.31.

Combine	signals	in	Figure	1.31	to	get	signals	in	Figure	1.32.



Figure	1.32.

Discrete-Time	Processing	of	CT	Signals*

DT	Processing	of	CT	Signals

Figure	1.33.	DSP	System

Analysis

()

Yc(	Ω)=	H	LP(	Ω)	Y(	ΩT)

where	we	know	that	Y(	ω)=	X(	ω)	G(	ω)	and	G(	ω)	is	the	frequency	response	of	the	DT	LTI	system.

Also,	remember	that	ω≡	ΩT	So,

()

Yc(	Ω)=	H	LP(	Ω)	G(	ΩT)	X(	ΩT)

where	Yc(	Ω)	and	H	LP(	Ω)	are	CTFTs	and	G(	ΩT)	and	X(	ΩT)	are	DTFTs.

Recall



Therefore	our	final	output	signal,	Yc(	Ω)	,	will	be:

()

Now,	if	Xc(	Ω)	is	bandlimited	to

and	we	use	the	usual	lowpass	reconstruction	filter	in	the

D/A,	Figure	1.34:

Figure	1.34.

Then,

()

Summary

For	bandlimited	signals	sampled	at	or	above	the	Nyquist	rate,	we	can	relate	the	input	and	output	of

the	DSP	system	by:

()

Yc(	Ω)=	G	eff(	Ω)	Xc(	Ω)

where



Figure	1.35.

Note

G	eff(	Ω)	is	LTI	if	and	only	if	the	following	two	conditions	are	satisfied:

1.	G(	ω)	is	LTI	(in	DT).

2.	Xc(	T)	is	bandlimited	and	sampling	rate	equal	to	or	greater	than	Nyquist.	For	example,	if	we

had	a	simple	pulse	described	by	Xc(	t)=	u(	t−	T	0)−	u(	t−	T	1)	where	T	1>	T	0	.	If	the	sampling	period

T>	T	1−	T	0	,	then	some	samples	might	"miss"	the	pulse	while	others	might	not	be	"missed."	This	is
what	we	term	time-varying	behavior.

Example	1.12.

Figure	1.36.

If

and	ω	1<	BT	,	determine	and	sketch	Yc(	Ω)	using	Figure	1.36.

Application:	60Hz	Noise	Removal



Figure	1.37.

Unfortunately,	in	real-world	situations	electrodes	also	pick	up	ambient	60	Hz	signals	from	lights,

computers,	etc.	.	In	fact,	usually	this	"60	Hz	noise"	is	much	greater	in	amplitude	than	the	EKG

signal	shown	in	Figure	1.37.	Figure	1.38	shows	the	EKG	signal;	it	is	barely	noticeable	as	it	has	become
overwhelmed	by	noise.

Figure	1.38.

Our	EKG	signal,	y(	t)	,	is	overwhelmed	by	noise.

DSP	Solution

Figure	1.39.

Figure	1.40.

Sampling	Period/Rate

First	we	must	note	that	|	Y(	Ω)|	is	bandlimited	to	±60	Hz.	Therefore,	the	minimum	rate	should	be

120	Hz.	In	order	to	get	the	best	results	we	should	set	fs=	240Hz	.

Figure	1.41.

Digital	Filter

Therefore,	we	want	to	design	a	digital	filter	that	will	remove	the	60Hz	component	and	preserve



the	rest.

Figure	1.42.

1.9.	Z-Transform

Difference	Equation*

Introduction

One	of	the	most	important	concepts	of	DSP	is	to	be	able	to	properly	represent	the	input/output

relationship	to	a	given	LTI	system.	A	linear	constant-coefficient	difference	equation	(LCCDE)

serves	as	a	way	to	express	just	this	relationship	in	a	discrete-time	system.	Writing	the	sequence	of

inputs	and	outputs,	which	represent	the	characteristics	of	the	LTI	system,	as	a	difference	equation

help	in	understanding	and	manipulating	a	system.

Definition:	difference	equation

An	equation	that	shows	the	relationship	between	consecutive	values	of	a	sequence	and	the

differences	among	them.	They	are	often	rearranged	as	a	recursive	formula	so	that	a	systems

output	can	be	computed	from	the	input	signal	and	past	outputs.

Example	.

()

y[	n]+7	y[	n−1]+2	y[	n−2]=	x[	n]−4	x[	n−1]

General	Formulas	for	the	Difference	Equation

As	stated	briefly	in	the	definition	above,	a	difference	equation	is	a	very	useful	tool	in	describing

and	calculating	the	output	of	the	system	described	by	the	formula	for	a	given	sample	n.	The	key

property	of	the	difference	equation	is	its	ability	to	help	easily	find	the	transform,	H(	z)	,	of	a

system.	In	the	following	two	subsections,	we	will	look	at	the	general	form	of	the	difference



equation	and	the	general	conversion	to	a	z-transform	directly	from	the	difference	equation.

Difference	Equation

The	general	form	of	a	linear,	constant-coefficient	difference	equation	(LCCDE),	is	shown	below:

()

We	can	also	write	the	general	form	to	easily	express	a	recursive	output,	which	looks	like	this:

()

From	this	equation,	note	that	y[	n−	k]	represents	the	outputs	and	x[	n−	k]	represents	the	inputs.	The

value	of	N	represents	the	order	of	the	difference	equation	and	corresponds	to	the	memory	of	the

system	being	represented.	Because	this	equation	relies	on	past	values	of	the	output,	in	order	to

compute	a	numerical	solution,	certain	past	outputs,	referred	to	as	the	initial	conditions,	must	be

known.

Conversion	to	Z-Transform

Using	the	above	formula,	Equation,	we	can	easily	generalize	the	transfer	function,	H(	z)	,	for	any
difference	equation.	Below	are	the	steps	taken	to	convert	any	difference	equation	into	its	transfer

function,	i.e.	z-transform.	The	first	step	involves	taking	the	Fourier	Transform	of	all	the	terms	in

Equation.	Then	we	use	the	linearity	property	to	pull	the	transform	inside	the	summation	and	the

time-shifting	property	of	the	z-transform	to	change	the	time-shifting	terms	to	exponentials.	Once

this	is	done,	we	arrive	at	the	following	equation:	a	0=1	.

()

()

Conversion	to	Frequency	Response

http://cnx.org/content/m0046/latest/


Once	the	z-transform	has	been	calculated	from	the	difference	equation,	we	can	go	one	step	further

to	define	the	frequency	response	of	the	system,	or	filter,	that	is	being	represented	by	the	difference

equation.

Remember	that	the	reason	we	are	dealing	with	these	formulas	is	to	be	able	to	aid	us	in	filter

design.	A	LCCDE	is	one	of	the	easiest	ways	to	represent	FIR	filters.	By	being	able	to	find	the

frequency	response,	we	will	be	able	to	look	at	the	basic	properties	of	any	filter	represented	by

a	simple	LCCDE.

Below	is	the	general	formula	for	the	frequency	response	of	a	z-transform.	The	conversion	is

simple	a	matter	of	taking	the	z-transform	formula,	H(	z)	,	and	replacing	every	instance	of	z	with

ⅇⅈw	.

()

Once	you	understand	the	derivation	of	this	formula,	look	at	the	module	concerning	Filter	Design

from	the	Z-Transform	for	a	look	into	how	all	of	these	ideas	of	the	Z-transform,	Difference

Equation,	and	Pole/Zero	Plots	play	a	role	in	filter	design.

Example

Example	1.13.	Finding	Difference	Equation

http://cnx.org/content/m10548/latest/
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Below	is	a	basic	example	showing	the	opposite	of	the	steps	above:	given	a	transfer	function

one	can	easily	calculate	the	systems	difference	equation.

()

Given	this	transfer	function	of	a	time-domain	filter,	we	want	to	find	the	difference	equation.

To	begin	with,	expand	both	polynomials	and	divide	them	by	the	highest	order	z.

()

From	this	transfer	function,	the	coefficients	of	the	two	polynomials	will	be	our	ak	and

bk	values	found	in	the	general	difference	equation	formula,	Equation.	Using	these	coefficients	and	the
above	form	of	the	transfer	function,	we	can	easily	write	the	difference	equation:

()

In	our	final	step,	we	can	rewrite	the	difference	equation	in	its	more	common	form	showing	the

recursive	nature	of	the	system.

()

Solving	a	LCCDE

In	order	for	a	linear	constant-coefficient	difference	equation	to	be	useful	in	analyzing	a	LTI

system,	we	must	be	able	to	find	the	systems	output	based	upon	a	known	input,	x(	n)	,	and	a	set	of

initial	conditions.	Two	common	methods	exist	for	solving	a	LCCDE:	the	direct	method	and	the

indirect	method,	the	later	being	based	on	the	z-transform.	Below	we	will	briefly	discuss	the

formulas	for	solving	a	LCCDE	using	each	of	these	methods.

Direct	Method

The	final	solution	to	the	output	based	on	the	direct	method	is	the	sum	of	two	parts,	expressed	in

the	following	equation:

()



y(	n)=	yh(	n)+	yp(	n)

The	first	part,	yh(	n)	,	is	referred	to	as	the	homogeneous	solution	and	the	second	part,	yh(	n)	,	is
referred	to	as	particular	solution.	The	following	method	is	very	similar	to	that	used	to	solve

many	differential	equations,	so	if	you	have	taken	a	differential	calculus	course	or	used	differential

equations	before	then	this	should	seem	very	familiar.

Homogeneous	Solution

We	begin	by	assuming	that	the	input	is	zero,	x(	n)=0	.	Now	we	simply	need	to	solve	the

homogeneous	difference	equation:

()

In	order	to	solve	this,	we	will	make	the	assumption	that	the	solution	is	in	the	form	of	an

exponential.	We	will	use	lambda,	λ,	to	represent	our	exponential	terms.	We	now	have	to	solve	the

following	equation:

()

We	can	expand	this	equation	out	and	factor	out	all	of	the	lambda	terms.	This	will	give	us	a	large

polynomial	in	parenthesis,	which	is	referred	to	as	the	characteristic	polynomial.	The	roots	of	this

polynomial	will	be	the	key	to	solving	the	homogeneous	equation.	If	there	are	all	distinct	roots,

then	the	general	solution	to	the	equation	will	be	as	follows:

()

yh(	n)=	C	1(	λ	1)	n+	C	2(	λ	2)	n+	…+	CN(	λN)	n

However,	if	the	characteristic	equation	contains	multiple	roots	then	the	above	general	solution

will	be	slightly	different.	Below	we	have	the	modified	version	for	an	equation	where	λ1	has	K

multiple	roots:

()

yh(	n)=	C	1(	λ	1)	n+	C	1	n(	λ	1)	n+	C	1	n	2(	λ	1)	n+	…+	C	1	nK−1(	λ	1)	n+	C	2(	λ	2)	n+	…+	CN(	λN)	n



Particular	Solution

The	particular	solution,	yp(	n)	,	will	be	any	solution	that	will	solve	the	general	difference	equation:

()

In	order	to	solve,	our	guess	for	the	solution	to	yp(	n)	will	take	on	the	form	of	the	input,	x(	n)	.	After
guessing	at	a	solution	to	the	above	equation	involving	the	particular	solution,	one	only	needs	to

plug	the	solution	into	the	difference	equation	and	solve	it	out.

Indirect	Method

The	indirect	method	utilizes	the	relationship	between	the	difference	equation	and	z-transform,

discussed	earlier,	to	find	a	solution.	The	basic	idea	is	to	convert	the	difference	equation	into	a	z-
transform,	as	described	above,	to	get	the	resulting	output,	Y(	z)	.	Then	by	inverse	transforming	this	and
using	partial-fraction	expansion,	we	can	arrive	at	the	solution.

(1.40)

Z	{	y	(	n	+	1	)	–	y	(	n	)	}	=	z	Y	(	z	)	–	y	(	0	)	This	can	be	interatively	extended	to	an	arbitrary	order
derivative	as	in	Equation	Equation	1.41.

(1.41)

Now,	the	Laplace	transform	of	each	side	of	the	differential	equation	can	be	taken

(1.42)

which	by	linearity	results	in

(1.43)



and	by	differentiation	properties	in

(1.44)

Rearranging	terms	to	isolate	the	Laplace	transform	of	the	output,

(1.45)

Thus,	it	is	found	that

(1.46)

In	order	to	find	the	output,	it	only	remains	to	find	the	Laplace	transform	X(	z)	of	the	input,

substitute	the	initial	conditions,	and	compute	the	inverse	Z-transform	of	the	result.	Partial	fraction

expansions	are	often	required	for	this	last	step.	This	may	sound	daunting	while	looking	at

Equation	1.46,	but	it	is	often	easy	in	practice,	especially	for	low	order	difference	equations.

Equation	1.46	can	also	be	used	to	determine	the	transfer	function	and	frequency	response.

As	an	example,	consider	the	difference	equation

(1.47)

y	[	n	-	2	]	+	4	y	[	n	-	1	]	+	3	y	[	n	]	=	cos	(	n	)	with	the	initial	conditions	y'(0)=1	and	y(0)=0	Using	the
method	described	above,	the	Z	transform

of	the	solution	y[	n]	is	given	by

(1.48)

Performing	a	partial	fraction	decomposition,	this	also	equals

(1.49)



Computing	the	inverse	Laplace	transform,

(1.50)

One	can	check	that	this	satisfies	that	this	satisfies	both	the	differential	equation	and	the	initial

conditions.

The	Z	Transform:	Definition*

Basic	Definition	of	the	Z-Transform

The	z-transform	of	a	sequence	is	defined	as

()

Sometimes	this	equation	is	referred	to	as	the	bilateral	z-transform.	At	times	the	z-transform	is

defined	as

()

which	is	known	as	the	unilateral	z-transform.

There	is	a	close	relationship	between	the	z-transform	and	the	Fourier	transform	of	a	discrete

time	signal,	which	is	defined	as

()

Notice	that	that	when	the	z–	n	is	replaced	with	ⅇ–(	ⅈωn)	the	z-transform	reduces	to	the	Fourier



Transform.	When	the	Fourier	Transform	exists,	z=	ⅇⅈω	,	which	is	to	have	the	magnitude	of	z	equal

to	unity.

The	Complex	Plane

In	order	to	get	further	insight	into	the	relationship	between	the	Fourier	Transform	and	the	Z-

Transform	it	is	useful	to	look	at	the	complex	plane	or	z-plane.	Take	a	look	at	the	complex	plane:

Figure	1.43.	Z-Plane

The	Z-plane	is	a	complex	plane	with	an	imaginary	and	real	axis	referring	to	the	complex-valued

variable	z.	The	position	on	the	complex	plane	is	given	by	rⅇⅈω	,	and	the	angle	from	the	positive,

real	axis	around	the	plane	is	denoted	by	ω.	X(	z)	is	defined	everywhere	on	this	plane.	X(	ⅇⅈω	)	on	the
other	hand	is	defined	only	where	|	z|=1	,	which	is	referred	to	as	the	unit	circle.	So	for	example,

ω=1	at	z=1	and

at	z=-1.	This	is	useful	because,	by	representing	the	Fourier	transform	as	the

z-transform	on	the	unit	circle,	the	periodicity	of	Fourier	transform	is	easily	seen.

Region	of	Convergence

The	region	of	convergence,	known	as	the	ROC,	is	important	to	understand	because	it	defines	the



region	where	the	z-transform	exists.	The	ROC	for	a	given	x[	n]	,	is	defined	as	the	range	of	z	for

which	the	z-transform	converges.	Since	the	z-transform	is	a	power	series,	it	converges	when

x[	n]	z–	n	is	absolutely	summable.	Stated	differently,

()

must	be	satisfied	for	convergence.	This	is	best	illustrated	by	looking	at	the	different	ROC's	of	the

z-transforms	of	αnu[	n]	and	αnu[	n−1]	.

Example	1.14.

For

()

x[	n]=	αnu[	n]

Figure	1.44.

x[	n]=	αnu[	n]	where	α=0.5.

()

This	sequence	is	an	example	of	a	right-sided	exponential	sequence	because	it	is	nonzero	for

n≥0	.	It	only	converges	when	|	αz-1|<1	.	When	it	converges,

()



If	|	αz-1|≥1	,	then	the	series,

does	not	converge.	Thus	the	ROC	is	the	range	of	values

where

()

|	αz-1|<1

or,	equivalently,

()

|	z|>|	α|

Figure	1.45.

ROC	for	x[	n]=	αnu[	n]	where	α=0.5

Example	1.15.

For

()



x[	n]=(–(	αn))	u[–	n−1]

Figure	1.46.

x[	n]=(–(	αn))	u[–	n−1]	where	α=0.5.

()

The	ROC	in	this	case	is	the	range	of	values	where

()

|	α-1	z|<1

or,	equivalently,

()

|	z|<|	α|

If	the	ROC	is	satisfied,	then



()

Figure	1.47.

ROC	for	x[	n]=(–(	αn))	u[–	n−1]

Table	of	Common	z-Transforms*

The	table	below	provides	a	number	of	unilateral	and	bilateral	z-transforms.	The	table	also

specifies	the	region	of	convergence.

The	notation	for	z	found	in	the	table	below	may	differ	from	that	found	in	other	tables.	For

example,	the	basic	z-transform	of	u[	n]	can	be	written	as	either	of	the	following	two
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expressions,	which	are	equivalent:

()

Table	1.2.

Signal

Z-Transform	ROC

δ[	n−	k]

z–	k

u[	n]

|	z|>1

–(	u[–	n−1])

|	z|<1

nu[	n]

|	z|>1

n	2	u[	n]

|	z|>1

n	3	u[	n]

|	z|>1

(–(	αn))	u[–	n−1]

|	z|<|α|

αnu[	n]

|	z|>|	α|

nαnu[	n]

|	z|>|	α|

n	2	αnu[	n]

|	z|>|	α|



γn	cos(	αn)	u[	n]



|	z|>|	γ|

γn	sin(	αn)	u[	n]

|	z|>|	γ|

Understanding	Pole/Zero	Plots	on	the	Z-Plane*

Introduction	to	Poles	and	Zeros	of	the	Z-Transform

It	is	quite	difficult	to	qualitatively	analyze	the	Laplace	transform	and	Z-transform,	since	mappings	of
their	magnitude	and	phase	or	real	part	and	imaginary	part	result	in	multiple

mappings	of	2-dimensional	surfaces	in	3-dimensional	space.	For	this	reason,	it	is	very	common	to

examine	a	plot	of	a	transfer	function's	poles	and	zeros	to	try	to	gain	a	qualitative	idea	of	what	a	system
does.

Once	the	Z-transform	of	a	system	has	been	determined,	one	can	use	the	information	contained	in

function's	polynomials	to	graphically	represent	the	function	and	easily	observe	many	defining

characteristics.	The	Z-transform	will	have	the	below	structure,	based	on	Rational	Functions:	()

The	two	polynomials,	P(	z)	and	Q(	z),	allow	us	to	find	the	poles	and	zeros	of	the	Z-Transform.

Definition:	zeros

1.	The	value(s)	for	z	where

.

2.	The	complex	frequencies	that	make	the	overall	gain	of	the	filter	transfer	function	zero.

Definition:	poles

1.	The	value(s)	for	z	where

.
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2.	The	complex	frequencies	that	make	the	overall	gain	of	the	filter	transfer	function	infinite.

Example	1.16.

Below	is	a	simple	transfer	function	with	the	poles	and	zeros	shown	below	it.

The	zeros	are:	{–1}

The	poles	are:

The	Z-Plane

Once	the	poles	and	zeros	have	been	found	for	a	given	Z-Transform,	they	can	be	plotted	onto	the	Z-

Plane.	The	Z-plane	is	a	complex	plane	with	an	imaginary	and	real	axis	referring	to	the	complex-

valued	variable	z.	The	position	on	the	complex	plane	is	given	by	rⅇⅈθ	and	the	angle	from	the

positive,	real	axis	around	the	plane	is	denoted	by	θ.	When	mapping	poles	and	zeros	onto	the	plane,

poles	are	denoted	by	an	"x"	and	zeros	by	an	"o".	The	below	figure	shows	the	Z-Plane,	and

examples	of	plotting	zeros	and	poles	onto	the	plane	can	be	found	in	the	following	section.



Figure	1.48.	Z-Plane

Examples	of	Pole/Zero	Plots

This	section	lists	several	examples	of	finding	the	poles	and	zeros	of	a	transfer	function	and	then

plotting	them	onto	the	Z-Plane.

Example	1.17.	Simple	Pole/Zero	Plot

The	zeros	are:	{0}

The	poles	are:

Figure	1.49.	Pole/Zero	Plot

Using	the	zeros	and	poles	found	from	the	transfer	function,	the	one	zero	is	mapped	to	zero	and	the	two
poles	are	placed	at	and

Example	1.18.	Complex	Pole/Zero	Plot

The	zeros	are:	{	ⅈ,	–	ⅈ}

The	poles	are:



Figure	1.50.	Pole/Zero	Plot

Using	the	zeros	and	poles	found	from	the	transfer	function,	the	zeros	are	mapped	to	±	ⅈ,	and	the	poles
are	placed	at	–1,

and

Example	1.19.	Pole-Zero	Cancellation

An	easy	mistake	to	make	with	regards	to	poles	and	zeros	is	to	think	that	a	function	like

is	the	same	as	s+3	.	In	theory	they	are	equivalent,	as	the	pole	and	zero	at	s=1	cancel

each	other	out	in	what	is	known	as	pole-zero	cancellation.	However,	think	about	what	may

happen	if	this	were	a	transfer	function	of	a	system	that	was	created	with	physical	circuits.	In

this	case,	it	is	very	unlikely	that	the	pole	and	zero	would	remain	in	exactly	the	same	place.	A

minor	temperature	change,	for	instance,	could	cause	one	of	them	to	move	just	slightly.	If	this

were	to	occur	a	tremendous	amount	of	volatility	is	created	in	that	area,	since	there	is	a	change

from	infinity	at	the	pole	to	zero	at	the	zero	in	a	very	small	range	of	signals.	This	is	generally	a

very	bad	way	to	try	to	eliminate	a	pole.	A	much	better	way	is	to	use	control	theory	to	move

the	pole	to	a	better	place.

Repeated	Poles	and	Zeros

It	is	possible	to	have	more	than	one	pole	or	zero	at	any	given	point.	For	instance,	the	discrete-

time	transfer	function	H(	z)=	z	2	will	have	two	zeros	at	the	origin	and	the	continuous-time

function

will	have	25	poles	at	the	origin.

MATLAB	-	If	access	to	MATLAB	is	readily	available,	then	you	can	use	its	functions	to	easily

create	pole/zero	plots.	Below	is	a	short	program	that	plots	the	poles	and	zeros	from	the	above

example	onto	the	Z-Plane.



%	Set	up	vector	for	zeros

z	=	[j	;	-j];

%	Set	up	vector	for	poles

p	=	[-1	;	.5+.5j	;	.5-.5j];

figure(1);

zplane(z,p);

title('Pole/Zero	Plot	for	Complex	Pole/Zero	Plot	Example');

Interactive	Demonstration	of	Poles	and	Zeros

Figure	1.51.



Interact	(when	online)	with	a	Mathematica	CDF	demonstrating	Pole/Zero	Plots.	To	Download,	right-
click	and	save	target	as	.cdf.

Applications	for	pole-zero	plots

Stability	and	Control	theory

Now	that	we	have	found	and	plotted	the	poles	and	zeros,	we	must	ask	what	it	is	that	this	plot	gives

us.	Basically	what	we	can	gather	from	this	is	that	the	magnitude	of	the	transfer	function	will	be

larger	when	it	is	closer	to	the	poles	and	smaller	when	it	is	closer	to	the	zeros.	This	provides	us

with	a	qualitative	understanding	of	what	the	system	does	at	various	frequencies	and	is	crucial	to

the	discussion	of	stability.

Pole/Zero	Plots	and	the	Region	of	Convergence

The	region	of	convergence	(ROC)	for	X(	z)	in	the	complex	Z-plane	can	be	determined	from	the

pole/zero	plot.	Although	several	regions	of	convergence	may	be	possible,	where	each	one

corresponds	to	a	different	impulse	response,	there	are	some	choices	that	are	more	practical.	A

ROC	can	be	chosen	to	make	the	transfer	function	causal	and/or	stable	depending	on	the	pole/zero

plot.

Filter	Properties	from	ROC

If	the	ROC	extends	outward	from	the	outermost	pole,	then	the	system	is	causal.

If	the	ROC	includes	the	unit	circle,	then	the	system	is	stable.

Below	is	a	pole/zero	plot	with	a	possible	ROC	of	the	Z-transform	in	the	Simple	Pole/Zero	Plot

discussed	earlier.	The	shaded	region	indicates	the	ROC	chosen	for	the	filter.	From	this	figure,	we
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can	see	that	the	filter	will	be	both	causal	and	stable	since	the	above	listed	conditions	are	both	met.

Example	1.20.

Figure	1.52.	Region	of	Convergence	for	the	Pole/Zero	Plot

The	shaded	area	represents	the	chosen	ROC	for	the	transfer	function.

Frequency	Response	and	Pole/Zero	Plots

The	reason	it	is	helpful	to	understand	and	create	these	pole/zero	plots	is	due	to	their	ability	to	help

us	easily	design	a	filter.	Based	on	the	location	of	the	poles	and	zeros,	the	magnitude	response	of

the	filter	can	be	quickly	understood.	Also,	by	starting	with	the	pole/zero	plot,	one	can	design	a

filter	and	obtain	its	transfer	function	very	easily.

Glossary

Definition:	difference	equation

An	equation	that	shows	the	relationship	between	consecutive	values	of	a	sequence	and	the

differences	among	them.	They	are	often	rearranged	as	a	recursive	formula	so	that	a	systems

output	can	be	computed	from	the	input	signal	and	past	outputs.	Example	.

simplemath	mathml-miitalicsy[	mathml-miitalicsn]+7	mathml-miitalicsy[	mathml-miitalicsn−1]+2

Definition:	poles

1.	The	value(s)	for	simplemath	mathml-miitalicsz	z	where	Qz=	.

2.	The	complex	frequencies	that	make	the	overall	gain	of	the	filter	transfer	function	infinite.

Definition:	zeros

1.	The	value(s)	for	simplemath	mathml-miitalicsz	z	where	Pz=	.

2.	The	complex	frequencies	that	make	the	overall	gain	of	the	filter	transfer	function	zero.

Solutions

Chapter	2.	Digital	Filter	Design

2.1.	Overview	of	Digital	Filter	Design*

Advantages	of	FIR	filters



1.	Straight	forward	conceptually	and	simple	to	implement

2.	Can	be	implemented	with	fast	convolution

3.	Always	stable

4.	Relatively	insensitive	to	quantization

5.	Can	have	linear	phase	(same	time	delay	of	all	frequencies)

Advantages	of	IIR	filters

1.	Better	for	approximating	analog	systems

2.	For	a	given	magnitude	response	specification,	IIR	filters	often	require	much	less	computation

than	an	equivalent	FIR,	particularly	for	narrow	transition	bands

Both	FIR	and	IIR	filters	are	very	important	in	applications.

Generic	Filter	Design	Procedure

1.	Choose	a	desired	response,	based	on	application	requirements

2.	Choose	a	filter	class

3.	Choose	a	quality	measure

4.	Solve	for	the	filter	in	class	2	optimizing	criterion	in	3

Perspective	on	FIR	filtering

Most	of	the	time,	people	do	L∞	optimal	design,	using	the	Parks-McClellan	algorithm.	This	is
probably	the	second	most	important	technique	in	"classical"	signal	processing	(after	the	Cooley-



Tukey	(radix-2)	FFT).

Most	of	the	time,	FIR	filters	are	designed	to	have	linear	phase.	The	most	important	advantage	of

FIR	filters	over	IIR	filters	is	that	they	can	have	exactly	linear	phase.	There	are	advanced	design

techniques	for	minimum-phase	filters,	constrained	L	2	optimal	designs,	etc.	(see	chapter	8	of	text).

However,	if	only	the	magnitude	of	the	response	is	important,	IIR	filers	usually	require	much

fewer	operations	and	are	typically	used,	so	the	bulk	of	FIR	filter	design	work	has	concentrated	on

linear	phase	designs.

2.2.	FIR	Filter	Design

Linear	Phase	Filters*

In	general,	for	–	π≤	ω≤	π	H(	ω)=|	H(	ω)|	ⅇ–(	ⅈθ(	ω))	Strictly	speaking,	we	say	H(	ω)	is	linear	phase	if	H(
ω)=|	H(	ω)|	ⅇ–(	ⅈωK)	ⅇ–(	ⅈθ	0)	Why	is	this	important?	A	linear	phase	response	gives	the	same	time
delay	for	ALL	frequencies!	(Remember	the	shift	theorem.)	This	is	very	desirable	in	many

applications,	particularly	when	the	appearance	of	the	time-domain	waveform	is	of	interest,	such	as

in	an	oscilloscope.	(see	Figure	2.1)



Figure	2.1.

Restrictions	on	h(n)	to	get	linear	phase

()

For	linear	phase,	we	require	the	right	side	of	Equation	to	be	ⅇ–(	ⅈθ	0)(real,positive	function	of	ω)	.

For	θ	0=0	,	we	thus	require

h(0)+	h(	M−1)=real	number	h(0)−	h(	M−1)=pure	imaginary	number	h(1)+	h(	M−2)=pure	real	number
h(1)−	h(	M−2)=pure	imaginary	number	⋮	Thus	h(	k)=	h*(	M−1−	k)	is	a	necessary	condition	for	the
right	side	of	Equation	to	be	real	valued,	for	θ	0=0	.

For

,	or	ⅇ–(	ⅈθ	0)=–	ⅈ	,	we	require

h(0)+	h(	M−1)=pure	imaginary	h(0)−	h(	M−1)=pure	real	number	⋮	⇒	h(	k)=–(	h*(	M−1−	k))	Usually,
one	is	interested	in	filters	with	real-valued	coefficients,	or	see	Figure	2.2	and	Figure	2.3.

Figure	2.2.

θ	0=0	(Symmetric	Filters).	h(	k)=	h(	M−1−	k).



Figure	2.3.

(Anti-Symmetric	Filters).	h(	k)=–(	h(	M−1−	k)).

Filter	design	techniques	are	usually	slightly	different	for	each	of	these	four	different	filter	types.

We	will	study	the	most	common	case,	symmetric-odd	length,	in	detail,	and	often	leave	the	others

for	homework	or	tests	or	for	when	one	encounters	them	in	practice.	Even-symmetric	filters	are

often	used;	the	anti-symmetric	filters	are	rarely	used	in	practice,	except	for	special	classes	of

filters,	like	differentiators	or	Hilbert	transformers,	in	which	the	desired	response	is	anti-

symmetric.

So	far,	we	have	satisfied	the	condition	that

where	A(	ω)	is	real-valued.

However,	we	have	not	assured	that	A(	ω)	is	non-negative.	In	general,	this	makes	the	design

techniques	much	more	difficult,	so	most	FIR	filter	design	methods	actually	design	filters	with

Generalized	Linear	Phase:

,	where	A(	ω)	is	real-valued,	but	possible	negative.



A(	ω)	is	called	the	amplitude	of	the	frequency	response.

Excuse

A(	ω)

Example	2.1.

Lowpass	Filter

Figure	2.4.	Desired	|H(ω)|

Figure	2.5.	Desired	∠H(ω)

The	slope	of	each	line	is



.

Figure	2.6.	Actual	|H(ω)|

A(	ω)	goes	negative.

Figure	2.7.	Actual	∠H(ω)

2	π	phase	jumps	due	to	periodicity	of	phase.	π	phase	jumps	due	to	sign	change	in	A(	ω)	.

Time-delay	introduces	generalized	linear	phase.

For	odd-length	FIR	filters,	a	linear-phase	design	procedure	is	equivalent	to	a	zero-phase

design	procedure	followed	by	an

-sample	delay	of	the	impulse	response.	For	even-

length	filters,	the	delay	is	non-integer,	and	the	linear	phase	must	be	incorporated	directly

in	the	desired	response!

Window	Design	Method*

The	truncate-and-delay	design	procedure	is	the	simplest	and	most	obvious	FIR	design	procedure.

Exercise	1.

Is	it	any	Good?

Yes;	in	fact	it's	optimal!	(in	a	certain	sense)

L2	optimization	criterion

http://cnx.org/content/m12041/latest/


find	h[	n]	,	0≤	n≤	M−1	,	maximizing	the	energy	difference	between	the	desired	response	and	the	actual
response:	i.e.,	find

by	Parseval's	relationship

()

Since

this	becomes

h[	n]

The	best	we	can	do	is	let

Thus	h[	n]=	hd[	n]	w[	n]	,

is

optimal	in	a	least-total-sqaured-error	(	L	2	,	or	energy)	sense!

Exercise	2.

Why,	then,	is	this	design	often	considered	undersirable?

http://cnx.org/content/m0047/latest/


(b)	A(	ω)	,	large	M

(a)	A(	ω)	,	small	M

Figure	2.7.

For	desired	spectra	with	discontinuities,	the	least-square	designs	are	poor	in	a	minimax	(worst-

case,	or	L∞	)	error	sense.

Window	Design	Method

Apply	a	more	gradual	truncation	to	reduce	"ringing"	(Gibb's	Phenomenon)

H(	ω)=	Hd(	ω)*	W(	ω)

The	window	design	procedure	(except	for	the	boxcar	window)	is	ad-hoc	and	not	optimal	in	any

usual	sense.	However,	it	is	very	simple,	so	it	is	sometimes	used	for	"quick-and-dirty"	designs	of	if

the	error	criterion	is	itself	heurisitic.

Frequency	Sampling	Design	Method	for	FIR	filters*

Given	a	desired	frequency	response,	the	frequency	sampling	design	method	designs	a	filter	with	a

frequency	response	exactly	equal	to	the	desired	response	at	a	particular	set	of	frequencies	ωk	.

(2.1)

Procedure

Desired	Response	must	incluce	linear	phase	shift	(if	linear	phase	is	desired)

http://cnx.org/content/m10092/latest/


Exercise	3.

What	is	Hd(	ω)	for	an	ideal	lowpass	filter,	cotoff	at	ωc	?

This	set	of	linear	equations	can	be	written	in	matrix	form

(2.2)

(2.3)

or

So

(2.4)

W	N=	M	ωi≠	ωj+	2πl	i≠	j

Important	Special	Case



What	if	the	frequencies	are	equally	spaced	between	0	and	2	π	,	i.e.

Then

so

or

Important	Special	Case	#2

h[	n]	symmetric,	linear	phase,	and	has	real	coefficients.	Since	h[	n]=	h[	M−	n]	,	there	are	only	degrees	of
freedom,	and	only	linear	equations	are	required.



(2.5)

Removing	linear	phase	from	both	sides	yields

Due	to

symmetry	of	response	for	real	coefficients,	only	ωk	on	ω∈[0,	π)	need	be	specified,	with	the

frequencies	–	ωk	thereby	being	implicitly	defined	also.	Thus	we	have	real-valued	simultaneous

linear	equations	to	solve	for	h[	n]	.

Special	Case	2a

h[	n]	symmetric,	odd	length,	linear	phase,	real	coefficients,	and	ωk	equally	spaced:

(2.6)

To	yield	real	coefficients,	A(	ω)	mus	be	symmetric	A(	ω)=	A(–	ω)⇒	A[	k]=	A[	M−	k]

(2.7)

Simlar	equations	exist	for	even	lengths,	anti-symmetric,	and



filter	forms.

Comments	on	frequency-sampled	design

This	method	is	simple	conceptually	and	very	efficient	for	equally	spaced	samples,	since	h[	n]	can

be	computed	using	the	IDFT.

H(	ω)	for	a	frequency	sampled	design	goes	exactly	through	the	sample	points,	but	it	may	be	very

far	off	from	the	desired	response	for	ω≠	ωk	.	This	is	the	main	problem	with	frequency	sampled

design.

Possible	solution	to	this	problem:	specify	more	frequency	samples	than	degrees	of	freedom,	and

minimize	the	total	error	in	the	frequency	response	at	all	of	these	samples.

Extended	frequency	sample	design

For	the	samples	H(	ωk)	where	0≤	k≤	M−1	and	N>	M	,	find	h[	n]	,	where	0≤	n≤	M−1	minimizing

∥	Hd(	ωk)−	H(	ωk)∥

For	∥	l∥∞	norm,	this	becomes	a	linear	programming	problem	(standard	packages	availble!)

Here	we	will	consider	the	∥	l∥2	norm.

To	minimize	the	∥	l∥2	norm;	that	is,

,	we	have	an	overdetermined	set	of	linear

equations:

or

The	minimum	error	norm	solution	is	well	known	to	be

;

is	well	known	as	the

pseudo-inverse	matrix.

Extended	frequency	sampled	design	discourages	radical	behavior	of	the	frequency	response

between	samples	for	sufficiently	closely	spaced	samples.	However,	the	actual	frequency

response	may	no	longer	pass	exactly	through	any	of	the	Hd(	ωk)	.



Parks-McClellan	FIR	Filter	Design*

The	approximation	tolerances	for	a	filter	are	very	often	given	in	terms	of	the	maximum,	or	worst-

case,	deviation	within	frequency	bands.	For	example,	we	might	wish	a	lowpass	filter	in	a	(16-bit)

CD	player	to	have	no	more	than	-bit	deviation	in	the	pass	and	stop	bands.

The	Parks-McClellan	filter	design	method	efficiently	designs	linear-phase	FIR	filters	that	are

optimal	in	terms	of	worst-case	(minimax)	error.	Typically,	we	would	like	to	have	the	shortest-

length	filter	achieving	these	specifications.	Figure	Figure	2.8	illustrates	the	amplitude	frequency

response	of	such	a	filter.

Figure	2.8.

The	black	boxes	on	the	left	and	right	are	the	passbands,	the	black	boxes	in	the	middle	represent	the	stop
band,	and	the	space	between	the	boxes	are	the	transition	bands.	Note	that	overshoots	may	be	allowed	in
the	transition	bands.

Exercise	4.

Must	there	be	a	transition	band?



Yes,	when	the	desired	response	is	discontinuous.	Since	the	frequency	response	of	a	finite-length

filter	must	be	continuous,	without	a	transition	band	the	worst-case	error	could	be	no	less	than	half

the	discontinuity.

Formal	Statement	of	the	L-∞	(Minimax)	Design	Problem

For	a	given	filter	length	(	M)	and	type	(odd	length,	symmetric,	linear	phase,	for	example),	and	a

relative	error	weighting	function	W(	ω)	,	find	the	filter	coefficients	minimizing	the	maximum

error

where	E(	ω)=	W(	ω)(	Hd(	ω)−	H(	ω))	and	F	is	a	compact	subset	of

ω∈[0,	π]	(	i.e.	,	all	ω	in	the	passbands	and	stop	bands).

Typically,	we	would	often	rather	specify	∥	E(	ω)∥∞≤	δ	and	minimize	over	M	and	h;	however,

the	design	techniques	minimize	δ	for	a	given	M.	One	then	repeats	the	design	procedure	for

different	M	until	the	minimum	M	satisfying	the	requirements	is	found.

We	will	discuss	in	detail	the	design	only	of	odd-length	symmetric	linear-phase	FIR	filters.	Even-

length	and	anti-symmetric	linear	phase	FIR	filters	are	essentially	the	same	except	for	a	slightly

different	implicit	weighting	function.	For	arbitrary	phase,	exactly	optimal	design	procedures	have

only	recently	been	developed	(1990).

Outline	of	L-∞	Filter	Design

The	Parks-McClellan	method	adopts	an	indirect	method	for	finding	the	minimax-optimal	filter

coefficients.

1.	Using	results	from	Approximation	Theory,	simple	conditions	for	determining	whether	a	given

filter	is	L∞	(minimax)	optimal	are	found.

2.	An	iterative	method	for	finding	a	filter	which	satisfies	these	conditions	(and	which	is	thus



optimal)	is	developed.

That	is,	the	L∞	filter	design	problem	is	actually	solved	indirectly.

Conditions	for	L-∞	Optimality	of	a	Linear-phase	FIR	Filter

All	conditions	are	based	on	Chebyshev's	"Alternation	Theorem,"	a	mathematical	fact	from

polynomial	approximation	theory.

Alternation	Theorem

Let	F	be	a	compact	subset	on	the	real	axis	x,	and	let	P(	x)	be	and	L	th-order	polynomial

Also,	let	D(	x)	be	a	desired	function	of	x	that	is	continuous	on	F,	and	W(	x)	a	positive,	continuous
weighting	function	on	F.	Define	the	error	E(	x)	on	F	as	E(	x)=	W(	x)(	D(	x)−	P(	x))	and	A	necessary	and
sufficient	condition	that	P(	x)	is	the	unique	L	th-order

polynomial	minimizing	∥	E(	x)∥∞	is	that	E(	x)	exhibits	at	least	L+2	"alternations;"	that	is,	there

must	exist	at	least	L+2	values	of	x,	xk∈	F	,	k=[0,	1,	…,	L+1]	,	such	that	x	0<	x	1<	…<	x	L	+	2	and	such

that	E(	xk)=–(	E(	x	k	+	1	))=±(∥	E∥∞)

Exercise	5.

What	does	this	have	to	do	with	linear-phase	filter	design?



It's	the	same	problem!	To	show	that,	consider	an	odd-length,	symmetric	linear	phase	filter.

(2.8)

(2.9)

Where

.

Using	trigonometric	identities	(such	as	cos(	nα)=2cos((	n−1)	α)cos(	α)−cos((	n−2)	α)	),	we	can

rewrite	A(	ω)	as

where	the	αk	are	related	to	the	h(	n)	by	a

linear	transformation.	Now,	let	x=cos(	ω)	.	This	is	a	one-to-one	mapping	from	x∈[-1,	1]	onto

ω∈[0,	π]	.	Thus	A(	ω)	is	an	L	th-order	polynomial	in	x=cos(	ω)	!

Implication

The	alternation	theorem	holds	for	the	L∞	filter	design	problem,	too!

Therefore,	to	determine	whether	or	not	a	length-	M,	odd-length,	symmetric	linear-phase	filter	is

optimal	in	an	L∞	sense,	simply	count	the	alternations	in	E(	ω)=	W(	ω)(	Ad(	ω)−	A(	ω))	in	the	pass	and

stop	bands.	If	there	are

or	more	alternations,	h(	n),	0≤	n≤	M−1	is	the	optimal	filter!

Optimality	Conditions	for	Even-length	Symmetric	Linear-phase	Filters

For	M	even,

where

Using	the	trigonometric	identity

cos(	α+	β)=cos(	α−	β)+2cos(	α)cos(	β)	to	pull	out	the	term	and	then	using	the	other	trig



identities,	it	can	be	shown	that	A(	ω)	can	be	written	as

Again,	this	is	a

polynomial	in	x=cos(	ω)	,	except	for	a	weighting	function	out	in	front.

()

which	implies

'

()

E(	x)=	W'(	x)(	Ad	(	x)−	P(	x))

where

and



Again,	this	is	a	polynomial	approximation

problem,	so	the	alternation	theorem	holds.	If	E(	ω)	has	at	least

alternations,	the	even-

length	symmetric	filter	is	optimal	in	an	L∞	sense.

The	prototypical	filter	design	problem:

See	Figure	2.9.

Figure	2.9.

L-∞	Optimal	Lowpass	Filter	Design	Lemma

1.	The	maximum	possible	number	of	alternations	for	a	lowpass	filter	is	L+3	:	The	proof	is	that

the	extrema	of	a	polynomial	occur	only	where	the	derivative	is	zero:

.	Since	P′(	x)	is	an

(	L	–	1	)	th-order	polynomial,	it	can	have	at	most	L	–	1	zeros.	However,	the	mapping

x=cos(	ω)	implies	that

at	ω=0	and	ω=	π	,	for	two	more	possible	alternation	points.

Finally,	the	band	edges	can	also	be	alternations,	for	a	total	of	L−1+2+2=	L+3	possible

alternations.

2.	There	must	be	an	alternation	at	either	ω=0	or	ω=	π	.



3.	Alternations	must	occur	at	ωp	and	ωs	.	See	Figure	2.9.

4.	The	filter	must	be	equiripple	except	at	possibly	ω=0	or	ω=	π	.	Again	see	Figure	2.9.

The	alternation	theorem	doesn't	directly	suggest	a	method	for	computing	the	optimal	filter.	It

simply	tells	us	how	to	recognize	that	a	filter	is	optimal,	or	isn't	optimal.	What	we	need	is	an

intelligent	way	of	guessing	the	optimal	filter	coefficients.

In	matrix	form,	these	L+2	simultaneous	equations	become

or

So,	for	the	given	set	of

L+2	extremal	frequencies,	we	can	solve	for	h	and	δ	via

.	Using	the	FFT,	we	can

compute	A(	ω)	of	h(	n)	,	on	a	dense	set	of	frequencies.	If	the	old	ωk	are,	in	fact	the	extremal	locations	of
A(	ω)	,	then	the	alternation	theorem	is	satisfied	and	h(	n)	is	optimal.	If	not,	repeat	the	process	with	the
new	extremal	locations.

Computational	Cost

O(	L	3)	for	the	matrix	inverse	and	N	log2	N	for	the	FFT	(	N≥32	L	,	typically),	per	iteration!

This	method	is	expensive	computationally	due	to	the	matrix	inverse.

A	more	efficient	variation	of	this	method	was	developed	by	Parks	and	McClellan	(1972),	and	is

based	on	the	Remez	exchange	algorithm.	To	understand	the	Remez	exchange	algorithm,	we	first

need	to	understand	Lagrange	Interpoloation.

Now	A(	ω)	is	an	L	th-order	polynomial	in	x=cos(	ω)	,	so	Lagrange	interpolation	can	be	used	to	exactly
compute	A(	ω)	from	L+1	samples	of	A(	ωk)	,	k=[0,	1,	2,	...,	L]	.

http://cnx.org/content/m1/latest/


Thus,	given	a	set	of	extremal	frequencies	and	knowing	δ	,	samples	of	the	amplitude	response

A(	ω)	can	be	computed	directly	from	the

()

without	solving	for	the	filter	coefficients!

This	leads	to	computational	savings!

Note	that	Equation	is	a	set	of	L+2	simultaneous	equations,	which	can	be	solved	for	δ	to	obtain	(Rabiner,
1975)

()

where

The	result	is	the	Parks-McClellan	FIR	filter	design	method,	which	is

simply	an	application	of	the	Remez	exchange	algorithm	to	the	filter	design	problem.	See

Figure	2.10.



Figure	2.10.

The	initial	guess	of	extremal	frequencies	is	usually	equally	spaced	in	the	band.	Computing	δ	costs	O(	L
2)	.	Using	Lagrange	interpolation	costs	O(16	LL)≈	O(16	L	2)	.	Computing	h(	n)	costs	O(	L	3)	,	but	it	is
only	done	once!

The	cost	per	iteration	is	O(16	L	2)	,	as	opposed	to	O(	L	3)	;	much	more	efficient	for	large	L	.	Can	also
interpolate	to	DFT	sample	frequencies,	take	inverse	FFT	to	get	corresponding	filter	coefficients,

and	zeropad	and	take	longer	FFT	to	efficiently	interpolate.

2.3.	IIR	Filter	Design

Overview	of	IIR	Filter	Design*

IIR	Filter

IIR	Filter	Design	Problem

Choose	{	ai}	,	{	bi}	to	best	approximate	some	desired	|	Hd(	w)|	or,	(occasionally),	Hd(	w)	.

As	before,	different	design	techniques	will	be	developed	for	different	approximation	criteria.

Outline	of	IIR	Filter	Design	Material

Bilinear	Transform:	Maps	∥	L∥∞	optimal	(and	other)	analog	filter	designs	to	∥	L∥∞	optimal

digital	IIR	filter	designs.

Prony's	Method:	Quasi-	∥	L∥2	optimal	method	for	time-domain	fitting	of	a	desired	impulse

response	(	ad	hoc).

Lp	Optimal	Design:	∥	L∥	p	optimal	filter	design	(1<	p<∞	)	using	non-linear	optimization

techniques.

Comments	on	IIR	Filter	Design	Methods



The	bilinear	transform	method	is	used	to	design	"typical"	∥	L∥∞	magnitude	optimal	filters.	The

∥	L∥	p	optimization	procedures	are	used	to	design	filters	for	which	classical	analog	prototype

solutions	don't	exist.	The	program	by	Deczky	(	DSP	Programs	Book,	IEEE	Press)	is	widely	used.

Prony/Linear	Prediction	techniques	are	used	often	to	obtain	initial	guesses,	and	are	almost

exclusively	used	in	data	modeling,	system	identification,	and	most	applications	involving	the

fitting	of	real	data	(for	example,	the	impulse	response	of	an	unknown	filter).

Prototype	Analog	Filter	Design*

Analog	Filter	Design

Laplace	transform:

Note	that	the	continuous-time	Fourier	transform	is

H(	ⅈλ)	(the	Laplace	transform	evaluated	on	the	imaginary	axis).

Since	the	early	1900's,	there	has	been	a	lot	of	research	on	designing	analog	filters	of	the	form

A	causal	IIR	filter	cannot	have	linear	phase	(no	possible	symmetry

http://cnx.org/content/m2102/latest/#causality


point),	and	design	work	for	analog	filters	has	concentrated	on	designing	filters	with	equiriplle	(

∥	L∥∞	)	magnitude	responses.	These	design	problems	have	been	solved.	We	will	not	concern

ourselves	here	with	the	design	of	the	analog	prototype	filters,	only	with	how	these	designs	are

mapped	to	discrete-time	while	preserving	optimality.

An	analog	filter	with	real	coefficients	must	have	a	magnitude	response	of	the	form

(|	H(	λ)|)2=	B(	λ	2)

()

Let	s=	ⅈλ	,	note	that	the	poles	and	zeros	of	B(–(	s	2))	are	symmetric	around	both	the	real	and	imaginary
axes:	that	is,	a	pole	at	p	1	implies	poles	at	p	1	,	,	–	p	1	,	and

,	as	seen	in	Figure	2.11.

Figure	2.11.	s-plane

Recall	that	an	analog	filter	is	stable	and	causal	if	all	the	poles	are	in	the	left	half-plane,	LHP,	and

is	minimum	phase	if	all	zeros	and	poles	are	in	the	LHP.

s=	ⅈλ	:

we	can	factor	B(–(	s	2))	into	H(	s)	H(–	s)	,	where

H(	s)	has	the	left	half	plane	poles	and	zeros,	and	H(–	s)	has	the	RHP	poles	and	zeros.

(|	H(	s)|)2=	H(	s)	H(–	s)	for	s=	ⅈλ	,	so	H(	s)	has	the	magnitude	response	B(	λ	2)	.	The	trick	to	analog	filter
design	is	to	design	a	good	B(	λ	2)	,	then	factor	this	to	obtain	a	filter	with	that	magnitude	response.

The	traditional	analog	filter	designs	all	take	the	form

,	where	F	is	a	rational

function	in	λ	2	.



Example	2.2.

where

.

Roots	of	1+	sN	are	N	points	equally	spaced	around	the	unit	circle	(Figure	2.12).

Figure	2.12.

Take	H(	s)=LHP	factors:

Traditional	Filter	Designs

Butterworth

Remember	this	for	homework	and	rest	problems!

"Maximally	smooth"	at	λ=0	and	λ=∞	(maximum	possible	number	of	zero	derivatives).

Figure	2.13.	B(	λ	2)=(|	H(	λ)|)2



Figure	2.13.

Chebyshev

where	C	2

M	(	λ)	is	an	M	th	order	Chebyshev	polynomial.	Figure	2.14.

(a)

(b)

Figure	2.14.

Inverse	Chebyshev

Figure	2.15.



Figure	2.15.

Elliptic	Function	Filter	(Cauer	Filter)

where	JM	is	the	"Jacobi	Elliptic	Function."	Figure	2.16.

Figure	2.16.

The	Cauer	filter	is	∥L∥∞	optimum	in	the	sense	that	for	a	given	M,	δp,	δs,	and	λp,	the	transition
bandwidth	is	smallest.

That	is,	it	is	∥L∥∞	optimal.

IIR	Digital	Filter	Design	via	the	Bilinear	Transform*

A	bilinear	transform	maps	an	analog	filter	Ha(	s)	to	a	discrete-time	filter	H(	z)	of	the	same	order.

If	only	we	could	somehow	map	these	optimal	analog	filter	designs	to	the	digital	world	while

preserving	the	magnitude	response	characteristics,	we	could	make	use	of	the	already-existing

body	of	knowledge	concerning	optimal	analog	filter	design.

Bilinear	Transformation

The	Bilinear	Transform	is	a	nonlinear	(ℂ	→	ℂ)	mapping	that	maps	a	function	of	the	complex

variable	s	to	a	function	of	a	complex	variable	z	.	This	map	has	the	property	that	the	LHP	in	s	(



Re(	s)<0	)	maps	to	the	interior	of	the	unit	circle	in	z	,	and	the	ⅈλ=	s	axis	maps	to	the	unit	circle	ⅇⅈω	in	z	.

Bilinear	transform:

Figure	2.17

Figure	2.17.

The	magnitude	response	doesn't	change	in	the	mapping	from	λ	to	ω	,	it	is	simply	warped

nonlinearly	according	to

,	Figure	2.18.

(a)



(b)

Figure	2.18.

The	first	image	implies	the	second	one.

This	mapping	preserves	∥	L∥∞	errors	in	(warped)	frequency	bands.	Thus	optimal	Cauer	(

∥	L∥∞	)	filters	in	the	analog	realm	can	be	mapped	to	∥	L∥∞	optimal	discrete-time	IIR	filters

using	the	bilinear	transform!	This	is	how	IIR	filters	with	∥	L∥∞	optimal	magnitude	responses

are	designed.

The	parameter	α	provides	one	degree	of	freedom	which	can	be	used	to	map	a	single	λ	0	to	any

desired	ω	0	:

or

This	can	be	used,	for	example,	to	map	the	pass-band	edge

of	a	lowpass	analog	prototype	filter	to	any	desired	pass-band	edge	in	ω	.	Often,	analog

prototype	filters	will	be	designed	with	λ=1	as	a	band	edge,	and	α	will	be	used	to	locate	the

band	edge	in	ω	.	Thus	an	M	th	order	optimal	lowpass	analog	filter	prototype	can	be	used	to

design	any	M	th	order	discrete-time	lowpass	IIR	filter	with	the	same	ripple	specifications.

Prewarping

Given	specifications	on	the	frequency	response	of	an	IIR	filter	to	be	designed,	map	these	to



specifications	in	the	analog	frequency	domain	which	are	equivalent.	Then	a	satisfactory	analog

prototype	can	be	designed	which,	when	transformed	to	discrete-time	using	the	bilinear

transformation,	will	meet	the	specifications.

Example	2.3.

The	goal	is	to	design	a	high-pass	filter,	ωs=	ωs	,	ωp=	ωp	,	δs=	δs	,	δp=	δp	;	pick	up	some	α=	α	0	.

The	goal	is	to	design	a	high-pass	filter,	ωs=	ωs	,	ωp=	ωp	,	δs=	δs	,	δp=	δp	;	pick	up	some	α=	α	0	.

In	Figure	2.19	the	δi	remain	the	same	and	the	band	edges	are	mapped	by

.

(a)



(b)

Figure	2.19.

Where

and

.

Impulse-Invariant	Design*

Pre-classical,	adhoc-but-easy	method	of	converting	an	analog	prototype	filter	to	a	digital	IIR

filter.	Does	not	preserve	any	optimality.

Impulse	invariance	means	that	digital	filter	impulse	response	exactly	equals	samples	of	the	analog

prototype	impulse	response:	h(	n)=	ha(	nT)	How	is	this	done?

The	impulse	response	of	a	causal,	stable	analog	filter	is	simply	a	sum	of	decaying	exponentials:

which	implies

ha(	t)=(	A	1	ⅇs	1	t+	A	2	ⅇs	2	t+...+	Apⅇspt)	u(	t)	For	impulse	invariance,	we	desire	h(	n)=	ha(	nT)=(	A	1
ⅇs	1	nT+	A	2	ⅇs	2	nT+...+	ApⅇspnT)	u(	n)	Since	where	|	z|>|	ⅇskT|	,	and

where

.

This	technique	is	used	occasionally	in	digital	simulations	of	analog	filters.

Exercise	6.

What	is	the	main	problem/drawback	with	this	design	technique?



What	is	the	main	problem/drawback	with	this	design	technique?

Since	it	samples	the	non-bandlimited	impulse	response	of	the	analog	prototype	filter,	the

frequency	response	aliases.	This	distorts	the	original	analog	frequency	and	destroys	any	optimal

frequency	properties	in	the	resulting	digital	filter.

Digital-to-Digital	Frequency	Transformations*

Given	a	prototype	digital	filter	design,	transformations	similar	to	the	bilinear	transform	can	also

be	developed.

Requirements	on	such	a	mapping	z-1=	g(	z-1)	:

1.	points	inside	the	unit	circle	stay	inside	the	unit	circle	(condition	to	preserve	stability)

2.	unit	circle	is	mapped	to	itself	(preserves	frequency	response)

This	condition	implies	that	ⅇ–(	ⅈω	1)=	g(	ⅇ–(	ⅈω))=|	g(	ω)|	ⅇⅈ∠(	g(	ω))	requires	that	|	g(	ⅇ–(	ⅈω))|=1
on	the	unit	circle!

Thus	we	require	an	all-pass	transformation:

where	|	αK|<1	,	which	is	required	to

satisfy	this	condition.

Example	2.4.	Lowpass-to-Lowpass

which	maps	original	filter	with	a	cutoff	at	ω

′

c	to	a	new	filter	with	cutoff	ωc	,

Example	2.5.	Lowpass-to-Highpass

which	maps	original	filter	with	a	cutoff	at	ωc	to	a	frequency	reversed	filter	with

cutoff	ω	′

c	,

(Interesting	and	occasionally	useful!)

Prony's	Method*



Prony's	Method	is	a	quasi-least-squares	time-domain	IIR	filter	design	method.

First,	assume	H(	z)	is	an	"all-pole"	system:

()

and

where	h(	n)=0	,	n<0	for	a	causal	system.

For	h=0	,	h(0)=	b	0	.

Let's	attempt	to	fit	a	desired	impulse	response	(let	it	be	causal,	although	one	can	extend	this

technique	when	it	isn't)	hd(	n)	.

A	true	least-squares	solution	would	attempt	to	minimize

where	H(	z)	takes	the

form	in	Equation.	This	is	a	difficult	non-linear	optimization	problem	which	is	known	to	be

plagued	by	local	minima	in	the	error	surface.	So	instead	of	solving	this	difficult	non-linear

problem,	we	solve	the	deterministic	linear	prediction	problem,	which	is	related	to,	but	not	the

same	as,	the	true	least-squares	optimization.



The	deterministic	linear	prediction	problem	is	a	linear	least-squares	optimization,	which	is	easy

to	solve,	but	it	minimizes	the	prediction	error,	not	the	(|desired−actual|)2	response	error.

Notice	that	for	n>0	,	with	the	all-pole	filter

()

the	right	hand	side	of	this	equation	is	a	linear	predictor	of	h(	n)	in	terms	of	the	M	previous	samples	of
h(	n)	.

For	the	desired	reponse	hd(	n)	,	one	can	choose	the	recursive	filter	coefficients	ak	to	minimize	the

squared	prediction	error

where,	in	practice,	the	∞	is	replaced	by	an

N	.

In	matrix	form,	that's

or

The	optimal	solution	is



Now	suppose	H(	z)	is	an	M	th	-order	IIR	(ARMA)	system,

or

()

For	n>	M	,	this	is	just	like	the	all-pole	case,	so	we	can	solve	for	the	best	predictor	coefficients	as

before:

or

and

Having

determined	the	a	's,	we	can	use	them	in	Equation	to	obtain	the	bn	's:

where

hd(	n−	k)=0	for	n−	k<0	.

For	N=2	M	,

is	square,	and	we	can	solve	exactly	for	the	ak	's	with	no	error.	The	bk	's	are	also

chosen	such	that	there	is	no	error	in	the	first	M+1	samples	of	h(	n)	.	Thus	for	N=2	M	,	the	first	2	M+1
points	of	h(	n)	exactly	equal	hd(	n)	.	This	is	called	Prony's	Method.	Baron	de	Prony	invented	this	in
1795.

For	N>2	M	,	hd(	n)=	h(	n)	for	0≤	n≤	M	,	the	prediction	error	is	minimized	for	M+1<	n≤	N	,	and	whatever
for	n≥	N+1	.	This	is	called	the	Extended	Prony	Method.

One	might	prefer	a	method	which	tries	to	minimize	an	overall	error	with	the	numerator

coefficients,	rather	than	just	using	them	to	exactly	fit	hd(0)	to	hd(	M)	.

Shank's	Method

1.	Assume	an	all-pole	model	and	fit	hd(	n)	by	minimizing	the	prediction	error	1≤	n≤	N	.

2.	Compute	v(	n)	,	the	impulse	response	of	this	all-pole	filter.

3.	Design	an	all-zero	(MA,	FIR)	filter	which	fits	v(	n)*	hz(	n)≈	hd(	n)	optimally	in	a	least-squares	sense
(Figure	2.20).



Figure	2.20.

Here,	h(	n)≈	hd(	n)	.

The	final	IIR	filter	is	the	cascade	of	the	all-pole	and	all-zero	filter.



This	is	is	solved	by

or	in	matrix	form

Which	has	solution:

Notice	that	none	of	these	methods	solve	the	true	least-squares	problem:

which	is	a	difficult	non-linear	optimization	problem.	The	true	least-squares	problem	can	be

written	as:

since	the	impulse	response	of	an	IIR	filter	is	a	sum	of

exponentials,	and	non-linear	optimization	is	then	used	to	solve	for	the	αi	and	βi	.

Linear	Prediction*

Recall	that	for	the	all-pole	design	problem,	we	had	the	overdetermined	set	of	linear	equations:

with	solution

Let's	look	more	closely	at	H	H

d	Hd=	R	.	r	i	j	is	related	to	the	correlation	of	hd	with	itself:

Note	also	that:

where

so	this	takes	the

form

,	or	Ra=–r	,	where	R	is	M×	M	,	a	is	M×1	,	and	r	is	also	M×1	.

Except	for	the	changing	endpoints	of	the	sum,	r	i	j	≈	r(	i−	j)=	r(	j−	i)	.	If	we	tweak	the	problem	slightly
to	make	r	i	j	=	r(	i−	j)	,	we	get:

The	matrix	R	is	Toeplitz

(diagonal	elements	equal),	and	a	can	be	solved	for	with	O(	M	2)	computations	using	Levinson's



recursion.

Statistical	Linear	Prediction

Used	very	often	for	forecasting	(	e.g.	stock	market).

Given	a	time-series	y(	n)	,	assumed	to	be	produced	by	an	auto-regressive	(AR)	(all-pole)	system:

where	u(	n)	is	a	white	Gaussian	noise	sequence	which	is	stationary	and	has

zero	mean.

To	determine	the	model	parameters	{	ak}	minimizing	the	variance	of	the	prediction	error,	we	seek

()

The	mean	of	y(	n)	is	zero.

()

()

Setting	Equation	equal	to	zero	yields:	Ra=–r	These	are	called	the	Yule-Walker	equations.	In	practice,
given	samples	of	a	sequence	y(	n)	,	we	estimate	r(	n)	as

which	is	extremely	similar	to	the	deterministic	least-squares	technique.

Solutions



Chapter	3.	The	DFT,	FFT,	and	Practical	Spectral

Analysis

3.1.	The	Discrete	Fourier	Transform

DFT	Definition	and	Properties*

DFT

The	discrete	Fourier	transform	(DFT)	is	the	primary	transform	used	for	numerical	computation

in	digital	signal	processing.	It	is	very	widely	used	for	spectrum	analysis,	fast	convolution,	and	many
other	applications.	The	DFT	transforms	N	discrete-time	samples	to	the	same	number	of

discrete	frequency	samples,	and	is	defined	as

()

The	DFT	is	widely	used	in	part	because	it	can	be	computed	very	efficiently	using	fast	Fourier

transform	(FFT)	algorithms.

IDFT

The	inverse	DFT	(IDFT)	transforms	N	discrete-frequency	samples	to	the	same	number	of	discrete-

time	samples.	The	IDFT	has	a	form	very	similar	to	the	DFT,

()

and	can	thus	also	be	computed	efficiently	using	FFTs.

DFT	and	IDFT	properties

Periodicity

Due	to	the	N-sample	periodicity	of	the	complex	exponential	basis	functions

in	the	DFT	and

IDFT,	the	resulting	transforms	are	also	periodic	with	N	samples.

http://cnx.org/content/col10281/latest/
http://cnx.org/content/col10281/latest/
http://cnx.org/content/col10281/latest/


X(	k+	N)=	X(	k)	x(	n)=	x(	n+	N)

Circular	Shift

A	shift	in	time	corresponds	to	a	phase	shift	that	is	linear	in	frequency.	Because	of	the	periodicity

induced	by	the	DFT	and	IDFT,	the	shift	is	circular,	or	modulo	N	samples.

The	modulus	operator	p	mod	N	means	the	remainder	of	p	when	divided

by	N.	For	example,	9mod5=4	and	-1mod5=4

Time	Reversal

(	x((–	n)mod	N)=	x((	N−	n)mod	N)	X((	N−	k)mod	N)=	X((–	k)mod	N))	Note:	time-reversal	maps	(0	0)	,
(1	N−1)	,	(2	N−2)	,	etc.	as	illustrated	in	the	figure	below.

(a)	Original	signal

(b)	Time-reversed

Figure	3.1.

Illustration	of	circular	time-reversal



Complex	Conjugate

Circular	Convolution	Property

Circular	convolution	is	defined	as

Circular	convolution	of	two	discrete-time	signals	corresponds	to	multiplication	of	their	DFTs:

(	x(	n)*	h(	n)	X(	k)	H(	k))

Multiplication	Property

A	similar	property	relates	multiplication	in	time	to	circular	convolution	in	frequency.

Parseval's	Theorem

Parseval's	theorem	relates	the	energy	of	a	length-	N	discrete-time	signal	(or	one	period)	to	the

energy	of	its	DFT.



Symmetry

The	continuous-time	Fourier	transform,	the	DTFT,	and	DFT	are	all	defined	as	transforms	of
complex-valued	data	to	complex-valued	spectra.	However,	in	practice	signals	are	often	real-valued.	The
DFT	of	a	real-valued	discrete-time	signal	has	a	special	symmetry,	in	which	the	real

part	of	the	transform	values	are	DFT	even	symmetric	and	the	imaginary	part	is	DFT	odd

symmetric,	as	illustrated	in	the	equation	and	figure	below.

x(	n)	real

(This	implies	X(0)	,

are	real-valued.)

<db:title>Real	part	of	X(k)	is	even</db:title>

(a)	Even-symmetry	in	DFT	sense

<db:title>Imaginary	part	of	X(k)	is	odd</db:title>

(b)	Odd-symmetry	in	DFT	sense

Figure	3.2.

DFT	symmetry	of	real-valued	signal

3.2.	Spectrum	Analysis

Spectrum	Analysis	Using	the	Discrete	Fourier	Transform*

Discrete-Time	Fourier	Transform

The	Discrete-Time	Fourier	Transform	(DTFT)	is	the	primary	theoretical	tool	for	understanding

the	frequency	content	of	a	discrete-time	(sampled)	signal.	The	DTFT	is	defined	as

()

The	inverse	DTFT	(IDTFT)	is	defined	by	an	integral	formula,	because	it	operates	on	a	continuous-

frequency	DTFT	spectrum:

()



The	DTFT	is	very	useful	for	theory	and	analysis,	but	is	not	practical	for	numerically	computing	a

spectrum	digitally,	because

1.	infinite	time	samples	means

infinite	computation

infinite	delay

2.	The	transform	is	continuous	in	the	discrete-time	frequency,	ω

For	practical	computation	of	the	frequency	content	of	real-world	signals,	the	Discrete	Fourier

Transform	(DFT)	is	used.

Discrete	Fourier	Transform

The	DFT	transforms	N	samples	of	a	discrete-time	signal	to	the	same	number	of	discrete	frequency

samples,	and	is	defined	as

()

The	DFT	is	invertible	by	the	inverse	discrete	Fourier	transform	(IDFT):

()



The	DFT	and	IDFT	are	a	self-contained,	one-to-one	transform	pair	for	a	length-	N	discrete-time	signal.
(That	is,	the	DFT	is	not	merely	an	approximation	to	the	DTFT	as	discussed	next.)	However,	the	DFT
is	very	often	used	as	a	practical	approximation	to	the	DTFT.

Relationships	Between	DFT	and	DTFT

DFT	and	Discrete	Fourier	Series

The	DFT	gives	the	discrete-time	Fourier	series	coefficients	of	a	periodic	sequence	(

x(	n)=	x(	n+	N)	)	of	period	N	samples,	or

()

as	can	easily	be	confirmed	by	computing	the	inverse	DTFT	of	the	corresponding	line	spectrum:

(3.1)

The	DFT	can	thus	be	used	to	exactly	compute	the	relative	values	of	the	N	line	spectral

components	of	the	DTFT	of	any	periodic	discrete-time	sequence	with	an	integer-length	period.

DFT	and	DTFT	of	finite-length	data

When	a	discrete-time	sequence	happens	to	equal	zero	for	all	samples	except	for	those	between	0

and	N−	1,	the	infinite	sum	in	the	DTFT	equation	becomes	the	same	as	the	finite	sum	from	0	to	N−	1	in
the	DFT	equation.	By	matching	the	arguments	in	the	exponential	terms,	we	observe	that	the	DFT	values
exactly	equal	the	DTFT	for	specific	DTFT	frequencies

.	That	is,	the	DFT

computes	exact	samples	of	the	DTFT	at	N	equally	spaced	frequencies

,	or



DFT	as	a	DTFT	approximation

In	most	cases,	the	signal	is	neither	exactly	periodic	nor	truly	of	finite	length;	in	such	cases,	the

DFT	of	a	finite	block	of	N	consecutive	discrete-time	samples	does	not	exactly	equal	samples	of

the	DTFT	at	specific	frequencies.	Instead,	the	DFT	gives	frequency	samples	of	a	windowed

(truncated)	DTFT

where

Once

again,	X(	k)	exactly	equals	X(	ωk)	a	DTFT	frequency	sample	only	when	x(	n)=0	,	n∉[0,	N−1]

Relationship	between	continuous-time	FT	and	DFT

The	goal	of	spectrum	analysis	is	often	to	determine	the	frequency	content	of	an	analog

(continuous-time)	signal;	very	often,	as	in	most	modern	spectrum	analyzers,	this	is	actually

accomplished	by	sampling	the	analog	signal,	windowing	(truncating)	the	data,	and	computing	and

plotting	the	magnitude	of	its	DFT.	It	is	thus	essential	to	relate	the	DFT	frequency	samples	back	to

the	original	analog	frequency.	Assuming	that	the	analog	signal	is	bandlimited	and	the	sampling

frequency	exceeds	twice	that	limit	so	that	no	frequency	aliasing	occurs,	the	relationship	between

the	continuous-time	Fourier	frequency	Ω	(in	radians)	and	the	DTFT	frequency	ω	imposed	by

sampling	is	ω=	ΩT	where	T	is	the	sampling	period.	Through	the	relationship

between	the

DTFT	frequency	ω	and	the	DFT	frequency	index	k,	the	correspondence	between	the	DFT

frequency	index	and	the	original	analog	frequency	can	be	found:

or	in	terms	of	analog

frequency	f	in	Hertz	(cycles	per	second	rather	than	radians)

for	k	in	the	range	k	between	0

and	.	It	is	important	to	note	that	correspond	to	negative	frequencies	due	to	the	periodicity	of



the	DTFT	and	the	DFT.

Exercise	1.

In	general,	will	DFT	frequency	values	X(	k)	exactly	equal	samples	of	the	analog	Fourier	transform

Xa	at	the	corresponding	frequencies?	That	is,	will

?

In	general,	NO.	The	DTFT	exactly	corresponds	to	the	continuous-time	Fourier	transform	only

when	the	signal	is	bandlimited	and	sampled	at	more	than	twice	its	highest	frequency.	The	DFT

frequency	values	exactly	correspond	to	frequency	samples	of	the	DTFT	only	when	the	discrete-

time	signal	is	time-limited.	However,	a	bandlimited	continuous-time	signal	cannot	be	time-

limited,	so	in	general	these	conditions	cannot	both	be	satisfied.

It	can,	however,	be	true	for	a	small	class	of	analog	signals	which	are	not	time-limited	but	happen

to	exactly	equal	zero	at	all	sample	times	outside	of	the	interval	.	The	sinc	function	with	a

bandwidth	equal	to	the	Nyquist	frequency	and	centered	at	t=	0	is	an	example.



Zero-Padding

If	more	than	N	equally	spaced	frequency	samples	of	a	length-	N	signal	are	desired,	they	can	easily

be	obtained	by	zero-padding	the	discrete-time	signal	and	computing	a	DFT	of	the	longer	length.

In	particular,	if	LN	DTFT	samples	are	desired	of	a	length-	N	sequence,	one	can	compute	the	length-	LN
DFT	of	a	length-	LN	zero-padded	sequence

Note	that	zero-padding	interpolates	the

spectrum.	One	should	always	zero-pad	(by	about	at	least	a	factor	of	4)	when	using	the	DFT	to

approximate	the	DTFT	to	get	a	clear	picture	of	the	DTFT.	While	performing	computations	on	zeros
may	at	first	seem	inefficient,	using	FFT	algorithms,	which	generally	expect	the	same

number	of	input	and	output	samples,	actually	makes	this	approach	very	efficient.

Figure	3.3	shows	the	magnitude	of	the	DFT	values	corresponding	to	the	non-negative	frequencies

of	a	real-valued	length-64	DFT	of	a	length-64	signal,	both	in	a	"stem"	format	to	emphasize	the

discrete	nature	of	the	DFT	frequency	samples,	and	as	a	line	plot	to	emphasize	its	use	as	an

approximation	to	the	continuous-in-frequency	DTFT.	From	this	figure,	it	appears	that	the	signal

has	a	single	dominant	frequency	component.

<db:title>Stem	plot</db:title>



(a)

<db:title>Line	Plot</db:title>

(b)

Figure	3.3.	Spectrum	without	zero-padding

Magnitude	DFT	spectrum	of	64	samples	of	a	signal	with	a	length-64	DFT	(no	zero	padding)

Zero-padding	by	a	factor	of	two	by	appending	64	zero	values	to	the	signal	and	computing	a	length-

128	DFT	yields	Figure	3.4.	It	can	now	be	seen	that	the	signal	consists	of	at	least	two	narrowband

frequency	components;	the	gap	between	them	fell	between	DFT	samples	in	Figure	3.3,	resulting	in

a	misleading	picture	of	the	signal's	spectral	content.	This	is	sometimes	called	the	picket-fence

effect,	and	is	a	result	of	insufficient	sampling	in	frequency.	While	zero-padding	by	a	factor	of	two

has	revealed	more	structure,	it	is	unclear	whether	the	peak	magnitudes	are	reliably	rendered,	and

the	jagged	linear	interpolation	in	the	line	graph	does	not	yet	reflect	the	smooth,	continuously-

differentiable	spectrum	of	the	DTFT	of	a	finite-length	truncated	signal.	Errors	in	the	apparent

peak	magnitude	due	to	insufficient	frequency	sampling	is	sometimes	referred	to	as	scalloping

loss.
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Figure	3.4.	Spectrum	with	factor-of-two	zero-padding

Magnitude	DFT	spectrum	of	64	samples	of	a	signal	with	a	length-128	DFT	(double-length	zero-
padding)

Zero-padding	to	four	times	the	length	of	the	signal,	as	shown	in	Figure	3.5,	clearly	shows	the

spectral	structure	and	reveals	that	the	magnitude	of	the	two	spectral	lines	are	nearly	identical.	The

line	graph	is	still	a	bit	rough	and	the	peak	magnitudes	and	frequencies	may	not	be	precisely

captured,	but	the	spectral	characteristics	of	the	truncated	signal	are	now	clear.
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(b)

Figure	3.5.	Spectrum	with	factor-of-four	zero-padding

Magnitude	DFT	spectrum	of	64	samples	of	a	signal	with	a	length-256	zero-padded	DFT	(four	times
zero-padding)

Zero-padding	to	a	length	of	1024,	as	shown	in	Figure	3.6	yields	a	spectrum	that	is	smooth	and

continuous	to	the	resolution	of	the	computer	screen,	and	produces	a	very	accurate	rendition	of	the

DTFT	of	the	truncated	signal.

<db:title>Stem	plot</db:title>



(a)

<db:title>Line	Plot</db:title>

(b)

Figure	3.6.	Spectrum	with	factor-of-sixteen	zero-padding



Magnitude	DFT	spectrum	of	64	samples	of	a	signal	with	a	length-1024	zero-padded	DFT.	The	spectrum
now	looks	smooth	and

continuous	and	reveals	all	the	structure	of	the	DTFT	of	a	truncated	signal.

The	signal	used	in	this	example	actually	consisted	of	two	pure	sinusoids	of	equal	magnitude.	The

slight	difference	in	magnitude	of	the	two	dominant	peaks,	the	breadth	of	the	peaks,	and	the	sinc-

like	lesser	side	lobe	peaks	throughout	frequency	are	artifacts	of	the	truncation,	or	windowing,

process	used	to	practically	approximate	the	DFT.	These	problems	and	partial	solutions	to	them	are

discussed	in	the	following	section.

Effects	of	Windowing

Applying	the	DTFT	multiplication	property

we	find	that	the

DFT	of	the	windowed	(truncated)	signal	produces	samples	not	of	the	true	(desired)	DTFT

spectrum	X(	ω)	,	but	of	a	smoothed	verson	X(	ω)*	W(	ω)	.	We	want	this	to	resemble	X(	ω)	as	closely	as
possible,	so	W(	ω)	should	be	as	close	to	an	impulse	as	possible.	The	window	w(	n)	need	not	be	a	simple
truncation	(or	rectangle,	or	boxcar)	window;	other	shapes	can	also	be	used	as	long	as

they	limit	the	sequence	to	at	most	N	consecutive	nonzero	samples.	All	good	windows	are	impulse-

like,	and	represent	various	tradeoffs	between	three	criteria:

1.	main	lobe	width:	(limits	resolution	of	closely-spaced	peaks	of	equal	height)

2.	height	of	first	sidelobe:	(limits	ability	to	see	a	small	peak	near	a	big	peak)

3.	slope	of	sidelobe	drop-off:	(limits	ability	to	see	small	peaks	further	away	from	a	big	peak)

Many	different	window	functions	have	been	developed	for	truncating	and	shaping	a	length-	N

signal	segment	for	spectral	analysis.	The	simple	truncation	window	has	a	periodic	sinc	DTFT,	as

shown	in	Figure	3.7.	It	has	the	narrowest	main-lobe	width,

http://en.wikipedia.org/wiki/Window_function


at	the	-3	dB	level	and

between

the	two	zeros	surrounding	the	main	lobe,	of	the	common	window	functions,	but	also	the	largest

side-lobe	peak,	at	about	-13	dB.	The	side-lobes	also	taper	off	relatively	slowly.

<db:title>Rectangular	window</db:title>



(a)

<db:title>Magnitude	of	boxcar	window	spectrum</db:title>

(b)

Figure	3.7.

Length-64	truncation	(boxcar)	window	and	its	magnitude	DFT	spectrum



The	Hann	window	(sometimes	also	called	the	hanning	window),	illustrated	in	Figure	3.8,	takes	the
form

for	n	between	0	and	N−1	.	It	has	a	main-lobe	width	(about

at	the	-

3	dB	level	and

between	the	two	zeros	surrounding	the	main	lobe)	considerably	larger	than	the

rectangular	window,	but	the	largest	side-lobe	peak	is	much	lower,	at	about	-31.5	dB.	The	side-

lobes	also	taper	off	much	faster.	For	a	given	length,	this	window	is	worse	than	the	boxcar	window

at	separating	closely-spaced	spectral	components	of	similar	magnitude,	but	better	for	identifying

smaller-magnitude	components	at	a	greater	distance	from	the	larger	components.
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<db:title>Magnitude	of	Hann	window	spectrum</db:title>



(b)

Figure	3.8.

Length-64	Hann	window	and	its	magnitude	DFT	spectrum

The	Hamming	window,	illustrated	in	Figure	3.9,	has	a	form	similar	to	the	Hann	window	but	with
slightly	different	constants:

for	n	between	0	and	N−1	.	Since	it	is	composed

of	the	same	Fourier	series	harmonics	as	the	Hann	window,	it	has	a	similar	main-lobe	width	(a	bit

less	than

at	the	-3	dB	level	and

between	the	two	zeros	surrounding	the	main	lobe),	but	the

largest	side-lobe	peak	is	much	lower,	at	about	-42.5	dB.	However,	the	side-lobes	also	taper	off

much	more	slowly	than	with	the	Hann	window.	For	a	given	length,	the	Hamming	window	is	better



than	the	Hann	(and	of	course	the	boxcar)	windows	at	separating	a	small	component	relatively	near

to	a	large	component,	but	worse	than	the	Hann	for	identifying	very	small	components	at

considerable	frequency	separation.	Due	to	their	shape	and	form,	the	Hann	and	Hamming	windows

are	also	known	as	raised-cosine	windows.

<db:title>Hamming	window</db:title>



(a)

<db:title>Magnitude	of	Hamming	window	spectrum</db:title>

(b)

Figure	3.9.

Length-64	Hamming	window	and	its	magnitude	DFT	spectrum

Standard	even-length	windows	are	symmetric	around	a	point	halfway	between	the	window

samples

and	.	For	some	applications	such	as	time-frequency	analysis,	it	may	be

important	to	align	the	window	perfectly	to	a	sample.	In	such	cases,	a	DFT-symmetric	window

that	is	symmetric	around	the	-th	sample	can	be	used.	For	example,	the	DFT-symmetric



Hamming	window	is

.	A	DFT-symmetric	window	has	a	purely	real-

valued	DFT	and	DTFT.	DFT-symmetric	versions	of	windows,	such	as	the	Hamming	and	Hann

windows,	composed	of	few	discrete	Fourier	series	terms	of	period	N,	have	few	non-zero	DFT

terms	(only	when	not	zero-padded)	and	can	be	used	efficiently	in	running	FFTs.

The	main-lobe	width	of	a	window	is	an	inverse	function	of	the	window-length	N	;	for	any	type	of

window,	a	longer	window	will	always	provide	better	resolution.

Many	other	windows	exist	that	make	various	other	tradeoffs	between	main-lobe	width,	height	of

largest	side-lobe,	and	side-lobe	rolloff	rate.	The	Kaiser	window	family,	based	on	a	modified	Bessel
function,	has	an	adjustable	parameter	that	allows	the	user	to	tune	the	tradeoff	over	a

continuous	range.	The	Kaiser	window	has	near-optimal	time-frequency	resolution	and	is	widely

used.	A	list	of	many	different	windows	can	be	found	here.

Example	3.1.

Figure	3.10	shows	64	samples	of	a	real-valued	signal	composed	of	several	sinusoids	of	various

frequencies	and	amplitudes.

http://en.wikipedia.org/wiki/Kaiser_window
http://en.wikipedia.org/wiki/Window_function


Figure	3.10.

64	samples	of	an	unknown	signal

Figure	3.11	shows	the	magnitude	(in	dB)	of	the	positive	frequencies	of	a	length-1024	zero-

padded	DFT	of	this	signal	(that	is,	using	a	simple	truncation,	or	rectangular,	window).



Figure	3.11.

Magnitude	(in	dB)	of	the	zero-padded	DFT	spectrum	of	the	signal	in	Figure	3.10	using	a	simple	length-
64	rectangular	window	From	this	spectrum,	it	is	clear	that	the	signal	has	two	large,	nearby	frequency
components

with	frequencies	near	1	radian	of	essentially	the	same	magnitude.

Figure	3.12	shows	the	spectral	estimate	produced	using	a	length-64	Hamming	window	applied

to	the	same	signal	shown	in	Figure	3.10.

Figure	3.12.

Magnitude	(in	dB)	of	the	zero-padded	DFT	spectrum	of	the	signal	in	Figure	3.10	using	a	length-64
Hamming	window	The	two	large	spectral	peaks	can	no	longer	be	resolved;	they	blur	into	a	single	broad
peak	due

to	the	reduced	spectral	resolution	of	the	broader	main	lobe	of	the	Hamming	window.	However,

the	lower	side-lobes	reveal	a	third	component	at	a	frequency	of	about	0.7	radians	at	about	35

dB	lower	magnitude	than	the	larger	components.	This	component	was	entirely	buried	under

the	side-lobes	when	the	rectangular	window	was	used,	but	now	stands	out	well	above	the	much

lower	nearby	side-lobes	of	the	Hamming	window.

Figure	3.13	shows	the	spectral	estimate	produced	using	a	length-64	Hann	window	applied	to

the	same	signal	shown	in	Figure	3.10.



Figure	3.13.

Magnitude	(in	dB)	of	the	zero-padded	DFT	spectrum	of	the	signal	in	Figure	3.10	using	a	length-64
Hann	window	The	two	large	components	again	merge	into	a	single	peak,	and	the	smaller	component

observed	with	the	Hamming	window	is	largely	lost	under	the	higher	nearby	side-lobes	of	the

Hann	window.	However,	due	to	the	much	faster	side-lobe	rolloff	of	the	Hann	window's

spectrum,	a	fourth	component	at	a	frequency	of	about	2.5	radians	with	a	magnitude	about	65

dB	below	that	of	the	main	peaks	is	now	clearly	visible.

This	example	illustrates	that	no	single	window	is	best	for	all	spectrum	analyses.	The	best

window	depends	on	the	nature	of	the	signal,	and	different	windows	may	be	better	for	different

components	of	the	same	signal.	A	skilled	spectrum	analysist	may	apply	several	different

windows	to	a	signal	to	gain	a	fuller	understanding	of	the	data.

Classical	Statistical	Spectral	Estimation*

Many	signals	are	either	partly	or	wholly	stochastic,	or	random.	Important	examples	include

human	speech,	vibration	in	machines,	and	CDMA	communication	signals.	Given	the	ever-present	noise
in	electronic	systems,	it	can	be	argued	that	almost	all	signals	are	at	least	partly	stochastic.

Such	signals	may	have	a	distinct	average	spectral	structure	that	reveals	important	information

http://en.wikipedia.org/wiki/Cdma


(such	as	for	speech	recognition	or	early	detection	of	damage	in	machinery).	Spectrum	analysis	of

any	single	block	of	data	using	window-based	deterministic	spectrum	analysis,	however,

produces	a	random	spectrum	that	may	be	difficult	to	interpret.	For	such	situations,	the	classical

statistical	spectrum	estimation	methods	described	in	this	module	can	be	used.

The	goal	in	classical	statistical	spectrum	analysis	is	to	estimate	E[(|	X(	ω)|)2]	,	the	power	spectral

density	(PSD)	across	frequency	of	the	stochastic	signal.	That	is,	the	goal	is	to	find	the	expected

(mean,	or	average)	energy	density	of	the	signal	as	a	function	of	frequency.	(For	zero-mean	signals,

this	equals	the	variance	of	each	frequency	sample.)	Since	the	spectrum	of	each	block	of	signal

samples	is	itself	random,	we	must	average	the	squared	spectral	magnitudes	over	a	number	of

blocks	of	data	to	find	the	mean.	There	are	two	main	classical	approaches,	the	periodogram	and

auto-correlation	methods.

Periodogram	method

The	periodogram	method	divides	the	signal	into	a	number	of	shorter	(and	often	overlapped)

blocks	of	data,	computes	the	squared	magnitude	of	the	windowed	(and	usually	zero-padded)

DFT,	Xi(	ωk)	,	of	each	block,	and	averages	them	to	estimate	the	power	spectral	density.	The	squared
magnitudes	of	the	DFTs	of	L	possibly	overlapped	length-	N	windowed	blocks	of	signal

(each	probably	with	zero-padding)	are	averaged	to	estimate	the	power	spectral	density:

For	a	fixed	total	number	of	samples,	this	introduces	a	tradeoff:	Larger

individual	data	blocks	provides	better	frequency	resolution	due	to	the	use	of	a	longer	window,	but

it	means	there	are	less	blocks	to	average,	so	the	estimate	has	higher	variance	and	appears	more

noisy.	The	best	tradeoff	depends	on	the	application.	Overlapping	blocks	by	a	factor	of	two	to	four

increases	the	number	of	averages	and	reduces	the	variance,	but	since	the	same	data	is	being

reused,	still	more	overlapping	does	not	further	reduce	the	variance.	As	with	any	window-based



spectrum	estimation	procedure,	the	window	function	introduces	broadening	and	sidelobes	into

the	power	spectrum	estimate.	That	is,	the	periodogram	produces	an	estimate	of	the	windowed

spectrum

,	not	of	E[(|	X(	ω)|)2]	.

Example	3.2.

Figure	3.14	shows	the	non-negative	frequencies	of	the	DFT	(zero-padded	to	1024	total

samples)	of	64	samples	of	a	real-valued	stochastic	signal.

Figure	3.14.

DFT	magnitude	(in	dB)	of	64	samples	of	a	stochastic	signal

With	no	averaging,	the	power	spectrum	is	very	noisy	and	difficult	to	interpret	other	than



noting	a	significant	reduction	in	spectral	energy	above	about	half	the	Nyquist	frequency.

Various	peaks	and	valleys	appear	in	the	lower	frequencies,	but	it	is	impossible	to	say	from	this

figure	whether	they	represent	actual	structure	in	the	power	spectral	density	(PSD)	or	simply

random	variation	in	this	single	realization.	Figure	3.15	shows	the	same	frequencies	of	a

length-1024	DFT	of	a	length-1024	signal.	While	the	frequency	resolution	has	improved,	there

is	still	no	averaging,	so	it	remains	difficult	to	understand	the	power	spectral	density	of	this

signal.	Certain	small	peaks	in	frequency	might	represent	narrowband	components	in	the

spectrum,	or	may	just	be	random	noise	peaks.

Figure	3.15.

DFT	magnitude	(in	dB)	of	1024	samples	of	a	stochastic	signal



In	Figure	3.16,	a	power	spectral	density	computed	from	averaging	the	squared	magnitudes	of

length-1024	zero-padded	DFTs	of	508	length-64	blocks	of	data	(overlapped	by	a	factor	of

four,	or	a	16-sample	step	between	blocks)	are	shown.

Figure	3.16.

Power	spectrum	density	estimate	(in	dB)	of	1024	samples	of	a	stochastic	signal

While	the	frequency	resolution	corresponds	to	that	of	a	length-64	truncation	window,	the

averaging	greatly	reduces	the	variance	of	the	spectral	estimate	and	allows	the	user	to	reliably

conclude	that	the	signal	consists	of	lowpass	broadband	noise	with	a	flat	power	spectrum	up	to

half	the	Nyquist	frequency,	with	a	stronger	narrowband	frequency	component	at	around	0.65

radians.



Auto-correlation-based	approach

The	averaging	necessary	to	estimate	a	power	spectral	density	can	be	performed	in	the	discrete-

time	domain,	rather	than	in	frequency,	using	the	auto-correlation	method.	The	squared	magnitude

of	the	frequency	response,	from	the	DTFT	multiplication	and	conjugation	properties,	corresponds

in	the	discrete-time	domain	to	the	signal	convolved	with	the	time-reverse	of	itself,

((|	X(	ω)|)2=	X(	ω)	X*(	ω)	↔	(	x(	n),	x*(–	n))=	r(	n))	or	its	auto-correlation	r(	n)=∑(	x(	k)	x*(	n+	k))	We
can

thus	compute	the	squared	magnitude	of	the	spectrum	of	a	signal	by	computing	the	DFT	of	its	auto-

correlation.	For	stochastic	signals,	the	power	spectral	density	is	an	expectation,	or	average,	and	by

linearity	of	expectation	can	be	found	by	transforming	the	average	of	the	auto-correlation.	For	a

finite	block	of	N	signal	samples,	the	average	of	the	autocorrelation	values,	r(	n)	,	is

Note	that	with	increasing	lag,	n,	fewer	values	are	averaged,	so	they

introduce	more	noise	into	the	estimated	power	spectrum.	By	windowing	the	auto-correlation

before	transforming	it	to	the	frequency	domain,	a	less	noisy	power	spectrum	is	obtained,	at	the

expense	of	less	resolution.	The	multiplication	property	of	the	DTFT	shows	that	the	windowing

smooths	the	resulting	power	spectrum	via	convolution	with	the	DTFT	of	the	window:

This	yields	another	important	interpretation	of	how	the	auto-

correlation	method	works:	it	estimates	the	power	spectral	density	by	averaging	the	power

spectrum	over	nearby	frequencies,	through	convolution	with	the	window	function's	transform,

to	reduce	variance.	Just	as	with	the	periodogram	approach,	there	is	always	a	variance	vs.

resolution	tradeoff.	The	periodogram	and	the	auto-correlation	method	give	similar	results	for	a

similar	amount	of	averaging;	the	user	should	simply	note	that	in	the	periodogram	case,	the

window	introduces	smoothing	of	the	spectrum	via	frequency	convolution	before	squaring	the



magnitude,	whereas	the	periodogram	convolves	the	squared	magnitude	with	W(	ω)	.

Short	Time	Fourier	Transform*

Short	Time	Fourier	Transform

The	Fourier	transforms	(FT,	DTFT,	DFT,	etc.	)	do	not	clearly	indicate	how	the	frequency	content

of	a	signal	changes	over	time.

That	information	is	hidden	in	the	phase	-	it	is	not	revealed	by	the	plot	of	the	magnitude	of	the

spectrum.

Note

To	see	how	the	frequency	content	of	a	signal	changes	over	time,	we	can	cut	the	signal	into

blocks	and	compute	the	spectrum	of	each	block.

To	improve	the	result,

1.	blocks	are	overlapping

2.	each	block	is	multiplied	by	a	window	that	is	tapered	at	its	endpoints.



Several	parameters	must	be	chosen:

Block	length,	R.

The	type	of	window.

Amount	of	overlap	between	blocks.	(Figure	3.17)

Amount	of	zero	padding,	if	any.

Figure	3.17.	STFT:	Overlap	Parameter

The	short-time	Fourier	transform	is	defined	as

()



where	w(	n)	is	the	window	function	of	length	R.

1.	The	STFT	of	a	signal	x(	n)	is	a	function	of	two	variables:	time	and	frequency.

2.	The	block	length	is	determined	by	the	support	of	the	window	function	w(	n)	.

3.	A	graphical	display	of	the	magnitude	of	the	STFT,	|	X(	ω,	m)|	,	is	called	the	spectrogram	of	the
signal.	It	is	often	used	in	speech	processing.

4.	The	STFT	of	a	signal	is	invertible.

5.	One	can	choose	the	block	length.	A	long	block	length	will	provide	higher	frequency	resolution

(because	the	main-lobe	of	the	window	function	will	be	narrow).	A	short	block	length	will

provide	higher	time	resolution	because	less	averaging	across	samples	is	performed	for	each

STFT	value.

6.	A	narrow-band	spectrogram	is	one	computed	using	a	relatively	long	block	length	R,	(long

window	function).

7.	A	wide-band	spectrogram	is	one	computed	using	a	relatively	short	block	length	R,	(short

window	function).

Sampled	STFT

To	numerically	evaluate	the	STFT,	we	sample	the	frequency	axis	ω	in	N	equally	spaced	samples

from	ω=0	to	ω=	2π	.

()

We	then	have	the	discrete	STFT,

()

where	0,…0	is	N−	R.

In	this	definition,	the	overlap	between	adjacent	blocks	is	R−1	.	The	signal	is	shifted	along	the



window	one	sample	at	a	time.	That	generates	more	points	than	is	usually	needed,	so	we	also

sample	the	STFT	along	the	time	direction.	That	means	we	usually	evaluate	Xd(	k,	Lm)	where	L	is	the
time-skip.	The	relation	between	the	time-skip,	the	number	of	overlapping	samples,	and	the

block	length	is	Overlap=	R−	L

Exercise	2.

Match	each	signal	to	its	spectrogram	in	Figure	3.17.

(a)



(b)

Figure	3.17.

Spectrogram	Example

Figure	3.18.



Figure	3.19.

The	matlab	program	for	producing	the	figures	above	(Figure	3.18	and	Figure	3.19).

%	LOAD	DATA

load	mtlb;

x	=	mtlb;

figure(1),	clf

plot(0:4000,x)

xlabel('n')

ylabel('x(n)')

%	SET	PARAMETERS

R	=	256;	%	R:	block	length

window	=	hamming(R);	%	window	function	of	length	R

N	=	512;	%	N:	frequency	discretization

L	=	35;	%	L:	time	lapse	between	blocks

fs	=	7418;	%	fs:	sampling	frequency

overlap	=	R	-	L;

%	COMPUTE	SPECTROGRAM



[B,f,t]	=	specgram(x,N,fs,window,overlap);

%	MAKE	PLOT

figure(2),	clf

imagesc(t,f,log10(abs(B)));

colormap('jet')

axis	xy

xlabel('time')

ylabel('frequency')

title('SPECTROGRAM,	R	=	256')

Effect	of	window	length	R

Figure	3.20.	Narrow-band	spectrogram:	better	frequency	resolution



Figure	3.21.	Wide-band	spectrogram:	better	time	resolution

Here	is	another	example	to	illustrate	the	frequency/time	resolution	trade-off	(See	figures	-

Figure	3.20,	Figure	3.21,	and	Figure	3.22).

(a)



(b)

Figure	3.22.	Effect	of	Window	Length	R

Effect	of	L	and	N

A	spectrogram	is	computed	with	different	parameters:	L∈{1,	10}	N∈{32,	256}

L	=	time	lapse	between	blocks.

N	=	FFT	length	(Each	block	is	zero-padded	to	length	N.)

In	each	case,	the	block	length	is	30	samples.

Exercise	3.

For	each	of	the	four	spectrograms	in	Figure	3.22	can	you	tell	what	L	and	N	are?



(a)

(b)

Figure	3.22.

L	and	N	do	not	effect	the	time	resolution	or	the	frequency	resolution.	They	only	affect	the

'pixelation'.

Effect	of	R	and	L

Shown	below	are	four	spectrograms	of	the	same	signal.	Each	spectrogram	is	computed	using	a

different	set	of	parameters.	R∈{120,	256,	1024}	L∈{35,	250}	where

R	=	block	length



L	=	time	lapse	between	blocks.

Exercise	4.

For	each	of	the	four	spectrograms	in	Figure	3.22,	match	the	above	values	of	L	and	R.

Figure	3.22.

If	you	like,	you	may	listen	to	this	signal	with	the	soundsc	command;	the	data	is	in	the	file:

stft_data.m.	Here	is	a	figure	of	the	signal.

Figure	3.23.

3.3.	Fast	Fourier	Transform	Algorithms



Overview	of	Fast	Fourier	Transform	(FFT)	Algorithms*

A	fast	Fourier	transform,	or	FFT,	is	not	a	new	transform,	but	is	a	computationally	efficient	algorithm
for	the	computing	the	DFT.	The	length-	N	DFT,	defined	as

()

where	X(	k)	and	x(	n)	are	in	general	complex-valued	and	0≤	k	,	n≤	N−1	,	requires	N	complex	multiplies
to	compute	each	X(	k)	.	Direct	computation	of	all	N	frequency	samples	thus	requires

N	2	complex	multiplies	and	N(	N−1)	complex	additions.	(This	assumes	precomputation	of	the	DFT

coefficients

;	otherwise,	the	cost	is	even	higher.)	For	the	large	DFT	lengths	used	in

many	applications,	N	2	operations	may	be	prohibitive.	(For	example,	digital	terrestrial	television

broadcast	in	Europe	uses	N	=	2048	or	8192	OFDM	channels,	and	the	SETI	project	uses	up	to	length-
4194304	DFTs.)	DFTs	are	thus	almost	always	computed	in	practice	by	an	FFT	algorithm.

FFTs	are	very	widely	used	in	signal	processing,	for	applications	such	as	spectrum	analysis	and	digital
filtering	via	fast	convolution.

History	of	the	FFT

It	is	now	known	that	C.F.	Gauss	invented	an	FFT	in	1805	or	so	to	assist	the	computation	of	planetary
orbits	via	discrete	Fourier	series.	Various	FFT	algorithms	were	independently	invented	over	the	next
two	centuries,	but	FFTs	achieved	widespread	awareness	and	impact	only	with	the

Cooley	and	Tukey	algorithm	published	in	1965,	which	came	at	a	time	of	increasing	use	of	digital

computers	and	when	the	vast	range	of	applications	of	numerical	Fourier	techniques	was	becoming

apparent.	Cooley	and	Tukey's	algorithm	spawned	a	surge	of	research	in	FFTs	and	was	also	partly

responsible	for	the	emergence	of	Digital	Signal	Processing	(DSP)	as	a	distinct,	recognized

discipline.	Since	then,	many	different	algorithms	have	been	rediscovered	or	developed,	and

efficient	FFTs	now	exist	for	all	DFT	lengths.

Summary	of	FFT	algorithms

The	main	strategy	behind	most	FFT	algorithms	is	to	factor	a	length-	N	DFT	into	a	number	of

shorter-length	DFTs,	the	outputs	of	which	are	reused	multiple	times	(usually	in	additional	short-

http://cnx.org/content/col10281/latest/
http://cnx.org/content/col10281/latest/
http://en.wikipedia.org/wiki/SETI
http://cnx.org/content/col10281/latest/
http://en.wikipedia.org/wiki/Carl_Friedrich_Gauss
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length	DFTs!)	to	compute	the	final	results.	The	lengths	of	the	short	DFTs	correspond	to	integer

factors	of	the	DFT	length,	N,	leading	to	different	algorithms	for	different	lengths	and	factors.	By

far	the	most	commonly	used	FFTs	select	N=2	M	to	be	a	power	of	two,	leading	to	the	very	efficient

power-of-two	FFT	algorithms,	including	the	decimation-in-time	radix-2	FFT	and	the

decimation-in-frequency	radix-2	FFT	algorithms,	the	radix-4	FFT	(	N=4	M	),	and	the	split-

radix	FFT.	Power-of-two	algorithms	gain	their	high	efficiency	from	extensive	reuse	of

intermediate	results	and	from	the	low	complexity	of	length-2	and	length-4	DFTs,	which	require	no

multiplications.	Algorithms	for	lengths	with	repeated	common	factors	(such	as	2	or	4	in	the	radix-2	and
radix-4	algorithms,	respectively)	require	extra	twiddle	factor	multiplications	between

the	short-length	DFTs,	which	together	lead	to	a	computational	complexity	of	O(	NlogN)	,	a	very

considerable	savings	over	direct	computation	of	the	DFT.

The	other	major	class	of	algorithms	is	the	Prime-Factor	Algorithms	(PFA).	In	PFAs,	the	short-length
DFTs	must	be	of	relatively	prime	lengths.	These	algorithms	gain	efficiency	by	reuse	of

intermediate	computations	and	by	eliminating	twiddle-factor	multiplies,	but	require	more

operations	than	the	power-of-two	algorithms	to	compute	the	short	DFTs	of	various	prime	lengths.

In	the	end,	the	computational	costs	of	the	prime-factor	and	the	power-of-two	algorithms	are

comparable	for	similar	lengths,	as	illustrated	in	Choosing	the	Best	FFT	Algorithm.	Prime-length	DFTs
cannot	be	factored	into	shorter	DFTs,	but	in	different	ways	both	Rader's	conversion	and	the

chirp	z-transform	convert	prime-length	DFTs	into	convolutions	of	other	lengths	that	can	be

computed	efficiently	using	FFTs	via	fast	convolution.

Some	applications	require	only	a	few	DFT	frequency	samples,	in	which	case	Goertzel's

http://cnx.org/content/m12025/latest/
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algorithm	halves	the	number	of	computations	relative	to	the	DFT	sum.	Other	applications	involve
successive	DFTs	of	overlapped	blocks	of	samples,	for	which	the	running	FFT	can	be	more

efficient	than	separate	FFTs	of	each	block.

Running	FFT*

Some	applications	need	DFT	frequencies	of	the	most	recent	N	samples	on	an	ongoing	basis.	One
example	is	DTMF,	or	touch-tone	telephone	dialing,	in	which	a	detection	circuit	must	constantly
monitor	the	line	for	two	simultaneous	frequencies	indicating	that	a	telephone	button	is	depressed.

In	such	cases,	most	of	the	data	in	each	successive	block	of	samples	is	the	same,	and	it	is	possible

to	efficiently	update	the	DFT	value	from	the	previous	sample	to	compute	that	of	the	current

sample.	Figure	3.24	illustrates	successive	length-4	blocks	of	data	for	which	successive	DFT	values

may	be	needed.	The	running	FFT	algorithm	described	here	can	be	used	to	compute	successive

DFT	values	at	a	cost	of	only	two	complex	multiplies	and	additions	per	DFT	frequency.

Figure	3.24.

http://en.wikipedia.org/wiki/DTMF


The	running	FFT	efficiently	computes	DFT	values	for	successive	overlapped	blocks	of	samples.

The	running	FFT	algorithm	is	derived	by	expressing	each	DFT	sample,	X	n	+	1	(	ωk)	,	for	the	next

block	at	time	n+1	in	terms	of	the	previous	value,	Xn(	ωk)	,	at	time	n.

Let	q=	p−1	:

Now	let's	add	and	subtract	ⅇ–(	ⅈωk(	N−2))	x(	n−	N+1)	:

()

This	running	FFT	algorithm	requires	only	two	complex	multiplies	and	adds	per	update,	rather	than

N	if	each	DFT	value	were	recomputed	according	to	the	DFT	equation.	Another	advantage	of	this

algorithm	is	that	it	works	for	any	ωk	,	rather	than	just	the	standard	DFT	frequencies.	This	can

make	it	advantageous	for	applications,	such	as	DTMF	detection,	where	only	a	few	arbitrary

frequencies	are	needed.

Successive	computation	of	a	specific	DFT	frequency	for	overlapped	blocks	can	also	be	thought	of

as	a	length-	N	FIR	filter.	The	running	FFT	is	an	efficient	recursive	implementation	of	this	filter	for	this
special	case.	Figure	3.25	shows	a	block	diagram	of	the	running	FFT	algorithm.	The

running	FFT	is	one	way	to	compute	DFT	filterbanks.	If	a	window	other	than	rectangular	is

desired,	a	running	FFT	requires	either	a	fast	recursive	implementation	of	the	corresponding

windowed,	modulated	impulse	response,	or	it	must	have	few	non-zero	coefficients	so	that	it	can	be

applied	after	the	running	FFT	update	via	frequency-domain	convolution.	DFT-symmmetric

raised-cosine	windows	are	an	example.

Figure	3.25.

Block	diagram	of	the	running	FFT	computation,	implemented	as	a	recursive	filter

http://cnx.org/content/col10285/latest/


Goertzel's	Algorithm*

Some	applications	require	only	a	few	DFT	frequencies.	One	example	is	frequency-shift	keying

(FSK)	demodulation,	in	which	typically	two	frequencies	are	used	to	transmit	binary	data;	another
example	is	DTMF,	or	touch-tone	telephone	dialing,	in	which	a	detection	circuit	must	constantly
monitor	the	line	for	two	simultaneous	frequencies	indicating	that	a	telephone	button	is	depressed.

Goertzel's	algorithm	[link]	reduces	the	number	of	real-valued	multiplications	by	almost	a	factor	of	two
relative	to	direct	computation	via	the	DFT	equation.	Goertzel's	algorithm	is	thus	useful	for	computing	a
few	frequency	values;	if	many	or	most	DFT	values	are	needed,	FFT	algorithms	that	compute	all	DFT
samples	in	O(	NlogN)	operations	are	faster.	Goertzel's	algorithm	can	be	derived

by	converting	the	DFT	equation	into	an	equivalent	form	as	a	convolution,	which	can	be

efficiently	implemented	as	a	digital	filter.	For	increased	clarity,	in	the	equations	below	the

complex	exponential	is	denoted	as

.	Note	that	because	W	–	N	k

N

always	equals	1,	the	DFT

equation	can	be	rewritten	as	a	convolution,	or	filtering	operation:

()

Note	that	this	last	expression	can	be	written	in	terms	of	a	recursive	difference	equation

y(	n)=	W	–	k

N

y(	n−1)+	x(	n)	where	y(–1)=0	.	The	DFT	coefficient	equals	the	output	of	the	difference

equation	at	time	n=	N	:	X(	k)=	y(	N)	Expressing	the	difference	equation	as	a	z-transform	and
multiplying	both	numerator	and	denominator	by	1−	W	k

http://en.wikipedia.org/wiki/Frequency-shift_keying
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N	z–1	gives	the	transfer	function

This	system	can	be	realized	by	the

structure	in	Figure	3.26

Figure	3.26.

We	want	y(	n)	not	for	all	n,	but	only	for	n=	N	.	We	can	thus	compute	only	the	recursive	part,	or	just	the
left	side	of	the	flow	graph	in	Figure	3.26,	for	n=[0,	1,	…,	N]	,	which	involves	only	a	real/complex
product	rather	than	a	complex/complex	product	as	in	a	direct	DFT,	plus	one	complex	multiply	to	get	y(
N)=	X(	k)	.

The	input	x(	N)	at	time	n=	N	must	equal	0!	A	slightly	more	efficient	alternate	implementation

that	computes	the	full	recursion	only	through	n=	N−1	and	combines	the	nonzero	operations	of

the	final	recursion	with	the	final	complex	multiply	can	be	found	here,	complete	with	pseudocode	(for
real-valued	data).

If	the	data	are	real-valued,	only	real/real	multiplications	and	real	additions	are	needed	until	the

final	multiply.

Cost

The	computational	cost	of	Goertzel's	algorithm	is	thus	2	N+2	real	multiplies	and	4	N−2	real

adds,	a	reduction	of	almost	a	factor	of	two	in	the	number	of	real	multiplies	relative	to	direct

http://www.mstarlabs.com/dsp/goertzel/goertzel.html
http://www.mstarlabs.com/dsp/goertzel/goertzel.html


computation	via	the	DFT	equation.	If	the	data	are	real-valued,	this	cost	is	almost	halved	again.

For	certain	frequencies,	additional	simplifications	requiring	even	fewer	multiplications	are

possible.	(For	example,	for	the	DC	(	k=0	)	frequency,	all	the	multipliers	equal	1	and	only

additions	are	needed.)	A	correspondence	by	C.G.	Boncelet,	Jr.	[link]	describes	some	of	these	additional
simplifications.	Once	again,	Goertzel's	and	Boncelet's	algorithms	are	efficient	for	a	few

DFT	frequency	samples;	if	more	than	logN	frequencies	are	needed,	O(	NlogN)	FFT	algorithms

that	compute	all	frequencies	simultaneously	will	be	more	efficient.
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Power-of-Two	FFTs

Power-of-two	FFTs*

FFTs	of	length	N=2	M	equal	to	a	power	of	two	are,	by	far,	the	most	commonly	used.	These

algorithms	are	very	efficient,	relatively	simple,	and	a	single	program	can	compute	power-of-two

FFTs	of	different	lengths.	As	with	most	FFT	algorithms,	they	gain	their	efficiency	by	computing

all	DFT	points	simultaneously	through	extensive	reuse	of	intermediate	computations;	they	are	thus
efficient	when	many	DFT	frequency	samples	are	needed.	The	simplest	power-of-two	FFTs

are	the	decimation-in-time	radix-2	FFT	and	the	decimation-in-frequency	radix-2	FFT;	they	reduce
the	length-	N=2	M	DFT	to	a	series	of	length-2	DFT	computations	with	twiddle-factor

complex	multiplications	between	them.	The	radix-4	FFT	algorithm	similarly	reduces	a	length-

N=4	M	DFT	to	a	series	of	length-4	DFT	computations	with	twiddle-factor	multiplies	in	between.

Radix-4	FFTs	require	only	75%	as	many	complex	multiplications	as	the	radix-2	algorithms,

although	the	number	of	complex	additions	remains	the	same.	Radix-8	and	higher-radix	FFT

algorithms	can	be	derived	using	multi-dimensional	index	maps	to	reduce	the	computational

http://cnx.org/content/m12025/latest/


complexity	a	bit	more.	However,	the	split-radix	algorithm	and	its	recent	extensions	combine	the	best
elements	of	the	radix-2	and	radix-4	algorithms	to	obtain	lower	complexity	than	either	or	than

any	higher	radix,	requiring	only	two-thirds	as	many	complex	multiplies	as	the	radix-2	algorithms.

All	of	these	algorithms	obtain	huge	savings	over	direct	computation	of	the	DFT,	reducing	the

complexity	from	O(	N	2)	to	O(	NlogN)	.

The	efficiency	of	an	FFT	implementation	depends	on	more	than	just	the	number	of	computations.

Efficient	FFT	programming	tricks	can	make	up	to	a	several-fold	difference	in	the	run-time	of

FFT	programs.	Alternate	FFT	structures	can	lead	to	a	more	convenient	data	flow	for	certain

hardware.	As	discussed	in	choosing	the	best	FFT	algorithm,	certain	hardware	is	designed	for,	and	thus
most	efficient	for,	FFTs	of	specific	lengths	or	radices.

Radix-2	Algorithms

Decimation-in-time	(DIT)	Radix-2	FFT*

The	radix-2	decimation-in-time	and	decimation-in-frequency	fast	Fourier	transforms	(FFTs)	are	the
simplest	FFT	algorithms.	Like	all	FFTs,	they	gain	their	speed	by	reusing	the	results	of



smaller,	intermediate	computations	to	compute	multiple	DFT	frequency	outputs.

Decimation	in	time

The	radix-2	decimation-in-time	algorithm	rearranges	the	discrete	Fourier	transform	(DFT)

equation	into	two	parts:	a	sum	over	the	even-numbered	discrete-time	indices	n=[0,	2,	4,	…,	N−2]

and	a	sum	over	the	odd-numbered	indices	n=[1,	3,	5,	…,	N−1]	as	in	Equation	3.2:	(3.2)

The	mathematical	simplifications	in	Equation	3.2	reveal	that	all	DFT	frequency	outputs	X(	k)	can	be
computed	as	the	sum	of	the	outputs	of	two	length-	DFTs,	of	the	even-indexed	and	odd-indexed	discrete-
time	samples,	respectively,	where	the	odd-indexed	short	DFT	is	multiplied	by	a

so-called	twiddle	factor	term

.	This	is	called	a	decimation	in	time	because	the	time

samples	are	rearranged	in	alternating	groups,	and	a	radix-2	algorithm	because	there	are	two

groups.	Figure	3.27	graphically	illustrates	this	form	of	the	DFT	computation,	where	for

convenience	the	frequency	outputs	of	the	length-	DFT	of	the	even-indexed	time	samples	are

denoted	G(	k)	and	those	of	the	odd-indexed	samples	as	H(	k)	.	Because	of	the	periodicity	with

frequency	samples	of	these	length-	DFTs,	G(	k)	and	H(	k)	can	be	used	to	compute	two	of	the

length-	N	DFT	frequencies,	namely	X(	k)	and

,	but	with	a	different	twiddle	factor.	This	reuse

of	these	short-length	DFT	outputs	gives	the	FFT	its	computational	savings.



Figure	3.27.

Decimation	in	time	of	a	length-	N	DFT	into	two	length-

DFTs	followed	by	a	combining	stage.

Whereas	direct	computation	of	all	N	DFT	frequencies	according	to	the	DFT	equation	would	require	N
2	complex	multiplies	and	N	2−	N	complex	additions	(for	complex-valued	data),	by	reusing

the	results	of	the	two	short-length	DFTs	as	illustrated	in	Figure	3.27,	the	computational	cost	is

now

New	Operation	Counts

complex	multiplies

complex	additions



This	simple	reorganization	and	reuse	has	reduced	the	total	computation	by	almost	a	factor	of	two

over	direct	DFT	computation!

Additional	Simplification

A	basic	butterfly	operation	is	shown	in	Figure	3.28,	which	requires	only	twiddle-factor	multiplies	per
stage.	It	is	worthwhile	to	note	that,	after	merging	the	twiddle	factors	to	a	single

term	on	the	lower	branch,	the	remaining	butterfly	is	actually	a	length-2	DFT!	The	theory	of	multi-

dimensional	index	maps	shows	that	this	must	be	the	case,	and	that	FFTs	of	any	factorable	length
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may	consist	of	successive	stages	of	shorter-length	FFTs	with	twiddle-factor	multiplications	in

between.

(b)

(a)

Figure	3.28.

Radix-2	DIT	butterfly	simplification:	both	operations	produce	the	same	outputs

Radix-2	decimation-in-time	FFT

The	same	radix-2	decimation	in	time	can	be	applied	recursively	to	the	two	length	DFTs	to	save
computation.	When	successively	applied	until	the	shorter	and	shorter	DFTs	reach	length-2,	the

result	is	the	radix-2	DIT	FFT	algorithm.

Figure	3.29.



Radix-2	Decimation-in-Time	FFT	algorithm	for	a	length-8	signal

The	full	radix-2	decimation-in-time	decomposition	illustrated	in	Figure	3.29	using	the	simplified

butterflies	involves	M=log2	N	stages,	each	with	butterflies	per	stage.	Each	butterfly	requires	1

complex	multiply	and	2	adds	per	butterfly.	The	total	cost	of	the	algorithm	is	thus

Computational	cost	of	radix-2	DIT	FFT

complex	multiplies

N	log2N	complex	adds

This	is	a	remarkable	savings	over	direct	computation	of	the	DFT.	For	example,	a	length-1024	DFT

would	require	1048576	complex	multiplications	and	1047552	complex	additions	with	direct

computation,	but	only	5120	complex	multiplications	and	10240	complex	additions	using	the

radix-2	FFT,	a	savings	by	a	factor	of	100	or	more.	The	relative	savings	increase	with	longer	FFT

lengths,	and	are	less	for	shorter	lengths.

Modest	additional	reductions	in	computation	can	be	achieved	by	noting	that	certain	twiddle

factors,	namely	Using	special	butterflies	for	W	0

N	,

,

,

,

,	require	no	multiplications,

or	fewer	real	multiplies	than	other	ones.	By	implementing	special	butterflies	for	these	twiddle

factors	as	discussed	in	FFT	algorithm	and	programming	tricks,	the	computational	cost	of	the	radix-2
decimation-in-time	FFT	can	be	reduced	to

2	N	log2	N−7	N+12	real	multiplies

3	N	log2	N−3	N+4	real	additions

In	a	decimation-in-time	radix-2	FFT	as	illustrated	in	Figure	3.29,	the	input	is	in	bit-reversed
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order	(hence	"decimation-in-time").	That	is,	if	the	time-sample	index	n	is	written	as	a	binary

number,	the	order	is	that	binary	number	reversed.	The	bit-reversal	process	is	illustrated	for	a

length-	N=8	example	below.

Example	3.3.	N=8

Table	3.1.

In-order	index	In-order	index	in	binary	Bit-reversed	binary	Bit-reversed	index

0

000

000

0

1

001

100

4

2

010

010

2

3

011

110

6

4

100

001



1

5

101

101

5

6

110

011

3

7

111

111

7

It	is	important	to	note	that,	if	the	input	signal	data	are	placed	in	bit-reversed	order	before

beginning	the	FFT	computations,	the	outputs	of	each	butterfly	throughout	the	computation	can	be

placed	in	the	same	memory	locations	from	which	the	inputs	were	fetched,	resulting	in	an	in-place

algorithm	that	requires	no	extra	memory	to	perform	the	FFT.	Most	FFT	implementations	are	in-

place,	and	overwrite	the	input	data	with	the	intermediate	values	and	finally	the	output.

Example	FFT	Code

The	following	function,	written	in	the	C	programming	language,	implements	a	radix-2

decimation-in-time	FFT.	It	is	designed	for	computing	the	DFT	of	complex-valued	inputs	to

produce	complex-valued	outputs,	with	the	real	and	imaginary	parts	of	each	number	stored	in

separate	double-precision	floating-point	arrays.	It	is	an	in-place	algorithm,	so	the	intermediate

and	final	output	values	are	stored	in	the	same	array	as	the	input	data,	which	is	overwritten.	After

initializations,	the	program	first	bit-reverses	the	discrete-time	samples,	as	is	typical	with	a



decimation-in-time	algorithm	(but	see	alternate	FFT	structures	for	DIT	algorithms	with	other

input	orders),	then	computes	the	FFT	in	stages	according	to	the	above	description.

Ihis	FFT	program	uses	a	standard	three-loop	structure	for	the	main	FFT	computation.	The	outer	loop
steps	through	the	stages	(each	column	in	Figure	3.29);	the	middle	loop	steps	through	"

flights"	(butterflies	with	the	same	twiddle	factor	from	each	short-length	DFT	at	each	stage),	and

the	inner	loop	steps	through	the	individual	butterflies.	This	ordering	minimizes	the	number	of

fetches	or	computations	of	the	twiddle-factor	values.	Since	the	bit-reverse	of	a	bit-reversed	index

is	the	original	index,	bit-reversal	can	be	performed	fairly	simply	by	swapping	pairs	of	data.

While	of	O(	NlogN)	complexity	and	thus	much	faster	than	a	direct	DFT,	this	simple	program	is

optimized	for	clarity,	not	for	speed.	A	speed-optimized	program	making	use	of	additional

efficient	FFT	algorithm	and	programming	tricks	will	compute	a	DFT	several	times	faster

on	most	machines.

/**********************************************************/

/*	fft.c	*/

/*	(c)	Douglas	L.	Jones	*/

/*	University	of	Illinois	at	Urbana-Champaign	*/

/*	January	19,	1992	*/

/*	*/

/*	fft:	in-place	radix-2	DIT	DFT	of	a	complex	input	*/

/*	*/

/*	input:	*/

/*	n:	length	of	FFT:	must	be	a	power	of	two	*/

/*	m:	n	=	2**m	*/

/*	input/output	*/

/*	x:	double	array	of	length	n	with	real	part	of	data	*/

/*	y:	double	array	of	length	n	with	imag	part	of	data	*/



/*	*/

/*	Permission	to	copy	and	use	this	program	is	granted	*/

/*	under	a	Creative	Commons	"Attribution"	license	*/

/*	http://creativecommons.org/licenses/by/1.0/	*/

/**********************************************************/

fft(n,m,x,y)

int	n,m;

double	x[],y[];

{

int	i,j,k,n1,n2;

double	c,s,e,a,t1,t2;

j	=	0;	/*	bit-reverse	*/

n2	=	n/2;

for	(i=1;	i	<	n	-	1;	i++)

{

n1	=	n2;

while	(	j	>=	n1	)

{

j	=	j	-	n1;

n1	=	n1/2;

}

j	=	j	+	n1;

if	(i	<	j)

{

t1	=	x[i];



x[i]	=	x[j];

x[j]	=	t1;

t1	=	y[i];

y[i]	=	y[j];

y[j]	=	t1;

}

}

n1	=	0;	/*	FFT	*/

n2	=	1;

for	(i=0;	i	<	m;	i++)

{

n1	=	n2;

n2	=	n2	+	n2;

e	=	-6.283185307179586/n2;

a	=	0.0;

for	(j=0;	j	<	n1;	j++)

{

c	=	cos(a);

s	=	sin(a);

a	=	a	+	e;

for	(k=j;	k	<	n;	k=k+n2)

{

t1	=	c*x[k+n1]	-	s*y[k+n1];

t2	=	s*x[k+n1]	+	c*y[k+n1];

x[k+n1]	=	x[k]	-	t1;



y[k+n1]	=	y[k]	-	t2;

x[k]	=	x[k]	+	t1;

y[k]	=	y[k]	+	t2;

}

}

}

return;

}

Decimation-in-Frequency	(DIF)	Radix-2	FFT*

The	radix-2	decimation-in-frequency	and	decimation-in-time	fast	Fourier	transforms	(FFTs)	are

the	simplest	FFT	algorithms.	Like	all	FFTs,	they	compute	the	discrete	Fourier	transform



(DFT)

()

where	for	notational	convenience

.	FFT	algorithms	gain	their	speed	by	reusing	the

results	of	smaller,	intermediate	computations	to	compute	multiple	DFT	frequency	outputs.

Decimation	in	frequency

The	radix-2	decimation-in-frequency	algorithm	rearranges	the	discrete	Fourier	transform	(DFT)

equation	into	two	parts:	computation	of	the	even-numbered	discrete-frequency	indices	X(	k)	for

k=[0,	2,	4,	…,	N−2]	(or	X(2	r)	as	in	Equation)	and	computation	of	the	odd-numbered	indices	k=[1,	3,	5,
…,	N−1]	(or	X(2	r+1)	as	in	Equation)

()

()



The	mathematical	simplifications	in	Equation	and	Equation	reveal	that	both	the	even-indexed	and	odd-
indexed	frequency	outputs	X(	k)	can	each	be	computed	by	a	length-	DFT.	The	inputs	to	these

DFTs	are	sums	or	differences	of	the	first	and	second	halves	of	the	input	signal,	respectively,

where	the	input	to	the	short	DFT	producing	the	odd-indexed	frequencies	is	multiplied	by	a	so-

called	twiddle	factor	term

.	This	is	called	a	decimation	in	frequency	because	the

frequency	samples	are	computed	separately	in	alternating	groups,	and	a	radix-2	algorithm

because	there	are	two	groups.	Figure	3.30	graphically	illustrates	this	form	of	the	DFT

computation.	This	conversion	of	the	full	DFT	into	a	series	of	shorter	DFTs	with	a	simple

preprocessing	step	gives	the	decimation-in-frequency	FFT	its	computational	savings.

Figure	3.30.

Decimation	in	frequency	of	a	length-	N	DFT	into	two	length-

DFTs	preceded	by	a	preprocessing	stage.

Whereas	direct	computation	of	all	N	DFT	frequencies	according	to	the	DFT	equation	would	require	N
2	complex	multiplies	and	N	2−	N	complex	additions	(for	complex-valued	data),	by

breaking	the	computation	into	two	short-length	DFTs	with	some	preliminary	combining	of	the

data,	as	illustrated	in	Figure	3.30,	the	computational	cost	is	now

New	Operation	Counts

complex	multiplies

complex	additions



This	simple	manipulation	has	reduced	the	total	computational	cost	of	the	DFT	by	almost	a	factor

of	two!

The	initial	combining	operations	for	both	short-length	DFTs	involve	parallel	groups	of	two	time

samples,	x(	n)	and

.	One	of	these	so-called	butterfly	operations	is	illustrated	in	Figure	3.31.

There	are	butterflies	per	stage,	each	requiring	a	complex	addition	and	subtraction	followed	by

one	twiddle-factor	multiplication	by

on	the	lower	output	branch.

Figure	3.31.

DIF	butterfly:	twiddle	factor	after	length-2	DFT

It	is	worthwhile	to	note	that	the	initial	add/subtract	part	of	the	DIF	butterfly	is	actually	a	length-2

DFT!	The	theory	of	multi-dimensional	index	maps	shows	that	this	must	be	the	case,	and	that	FFTs	of
any	factorable	length	may	consist	of	successive	stages	of	shorter-length	FFTs	with

twiddle-factor	multiplications	in	between.	It	is	also	worth	noting	that	this	butterfly	differs	from

the	decimation-in-time	radix-2	butterfly	in	that	the	twiddle	factor	multiplication	occurs	after	the
combining.

Radix-2	decimation-in-frequency	algorithm

The	same	radix-2	decimation	in	frequency	can	be	applied	recursively	to	the	two	length-	DFTs	to	save
additional	computation.	When	successively	applied	until	the	shorter	and	shorter	DFTs	reach
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length-2,	the	result	is	the	radix-2	decimation-in-frequency	FFT	algorithm.

Figure	3.32.

Radix-2	decimation-in-frequency	FFT	for	a	length-8	signal

The	full	radix-2	decimation-in-frequency	decomposition	illustrated	in	Figure	3.32	requires

M=log2	N	stages,	each	with	butterflies	per	stage.	Each	butterfly	requires	1	complex	multiply

and	2	adds	per	butterfly.	The	total	cost	of	the	algorithm	is	thus

Computational	cost	of	radix-2	DIF	FFT

complex	multiplies

N	log2N	complex	adds



This	is	a	remarkable	savings	over	direct	computation	of	the	DFT.	For	example,	a	length-1024	DFT

would	require	1048576	complex	multiplications	and	1047552	complex	additions	with	direct

computation,	but	only	5120	complex	multiplications	and	10240	complex	additions	using	the

radix-2	FFT,	a	savings	by	a	factor	of	100	or	more.	The	relative	savings	increase	with	longer	FFT

lengths,	and	are	less	for	shorter	lengths.	Modest	additional	reductions	in	computation	can	be

achieved	by	noting	that	certain	twiddle	factors,	namely	W	0

N	,

,

,

,

,	require	no



multiplications,	or	fewer	real	multiplies	than	other	ones.	By	implementing	special	butterflies	for

these	twiddle	factors	as	discussed	in	FFT	algorithm	and	programming	tricks,	the	computational	cost
of	the	radix-2	decimation-in-frequency	FFT	can	be	reduced	to

2	N	log2	N−7	N+12	real	multiplies

3	N	log2	N−3	N+4	real	additions

The	decimation-in-frequency	FFT	is	a	flow-graph	reversal	of	the	decimation-in-time	FFT:	it	has	the
same	twiddle	factors	(in	reverse	pattern)	and	the	same	operation	counts.

In	a	decimation-in-frequency	radix-2	FFT	as	illustrated	in	Figure	3.32,	the	output	is	in	bit-

reversed	order	(hence	"decimation-in-frequency").	That	is,	if	the	frequency-sample	index	n	is

written	as	a	binary	number,	the	order	is	that	binary	number	reversed.	The	bit-reversal	process

is	illustrated	here.

It	is	important	to	note	that,	if	the	input	data	are	in	order	before	beginning	the	FFT	computations,

the	outputs	of	each	butterfly	throughout	the	computation	can	be	placed	in	the	same	memory

locations	from	which	the	inputs	were	fetched,	resulting	in	an	in-place	algorithm	that	requires	no

extra	memory	to	perform	the	FFT.	Most	FFT	implementations	are	in-place,	and	overwrite	the

input	data	with	the	intermediate	values	and	finally	the	output.

Alternate	FFT	Structures*

Bit-reversing	the	input	in	decimation-in-time	(DIT)	FFTs	or	the	output	in	decimation-in-

frequency	(DIF)	FFTs	can	sometimes	be	inconvenient	or	inefficient.	For	such	situations,

alternate	FFT	structures	have	been	developed.	Such	structures	involve	the	same	mathematical

computations	as	the	standard	algorithms,	but	alter	the	memory	locations	in	which	intermediate

values	are	stored	or	the	order	of	computation	of	the	FFT	butterflies.

The	structure	in	Figure	3.33	computes	a	decimation-in-frequency	FFT,	but	remaps	the	memory	usage
so	that	the	input	is	bit-reversed,	and	the	output	is	in-order	as	in	the	conventional

decimation-in-time	FFT.	This	alternate	structure	is	still	considered	a	DIF	FFT	because	the

twiddle	factors	are	applied	as	in	the	DIF	FFT.	This	structure	is	useful	if	for	some	reason	the	DIF

butterfly	is	preferred	but	it	is	easier	to	bit-reverse	the	input.



Figure	3.33.

Decimation-in-frequency	radix-2	FFT	with	bit-reversed	input.	This	is	an	in-place	algorithm	in	which
the	same	memory	can	be	reused	throughout	the	computation.

There	is	a	similar	structure	for	the	decimation-in-time	FFT	with	in-order	inputs	and	bit-reversed
frequencies.	This	structure	can	be	useful	for	fast	convolution	on	machines	that	favor	decimation-in-
time	algorithms	because	the	filter	can	be	stored	in	bit-reverse	order,	and	then	the	inverse	FFT

returns	an	in-order	result	without	ever	bit-reversing	any	data.	As	discussed	in	Efficient	FFT

Programming	Tricks,	this	may	save	several	percent	of	the	execution	time.

The	structure	in	Figure	3.34	implements	a	decimation-in-frequency	FFT	that	has	both	input	and
output	in	order.	It	thus	avoids	the	need	for	bit-reversing	altogether.	Unfortunately,	it	destroys	the

in-place	structure	somewhat,	making	an	FFT	program	more	complicated	and	requiring	more

memory;	on	most	machines	the	resulting	cost	exceeds	the	benefits.	This	structure	can	be

computed	in	place	if	two	butterflies	are	computed	simultaneously.



Figure	3.34.

Decimation-in-frequency	radix-2	FFT	with	in-order	input	and	output.	It	can	be	computed	in-place	if	two
butterflies	are	computed

simultaneously.

The	structure	in	Figure	3.35	has	a	constant	geometry;	the	connections	between	memory	locations

are	identical	in	each	FFT	stage.	Since	it	is	not	in-place	and	requires	bit-reversal,	it	is	inconvenient	for
software	implementation,	but	can	be	attractive	for	a	highly	parallel	hardware	implementation

because	the	connections	between	stages	can	be	hardwired.	An	analogous	structure	exists	that	has



bit-reversed	inputs	and	in-order	outputs.

Figure	3.35.

This	constant-geometry	structure	has	the	same	interconnect	pattern	from	stage	to	stage.	This	structure	is
sometimes	useful	for	special	hardware.

Radix-4	FFT	Algorithms*

The	radix-4	decimation-in-time	and	decimation-in-frequency	fast	Fourier	transforms	(FFTs)

gain	their	speed	by	reusing	the	results	of	smaller,	intermediate	computations	to	compute	multiple

DFT	frequency	outputs.	The	radix-4	decimation-in-time	algorithm	rearranges	the	discrete

Fourier	transform	(DFT)	equation	into	four	parts:	sums	over	all	groups	of	every	fourth	discrete-time
index	n=[0,	4,	8,	…,	N−4]	,	n=[1,	5,	9,	…,	N−3]	,	n=[2,	6,	10,	…,	N−2]	and	n=[3,	7,	11,	…,	N−1]	as	in
Equation.	(This	works	out	only	when	the	FFT	length	is	a	multiple	of	four.)	Just	as	in	the	radix-2
decimation-in-time	FFT,	further	mathematical	manipulation	shows	that	the	length-	N	DFT	can	be
computed	as	the	sum	of	the	outputs	of	four	length-	DFTs,	of	the

even-indexed	and	odd-indexed	discrete-time	samples,	respectively,	where	three	of	them	are

multiplied	by	so-called	twiddle	factors

,

,	and

.

()

This	is	called	a	decimation	in	time	because	the	time	samples	are	rearranged	in	alternating	groups,



and	a	radix-4	algorithm	because	there	are	four	groups.	Figure	3.36	graphically	illustrates	this	form	of
the	DFT	computation.

Figure	3.36.	Radix-4	DIT	structure



Decimation	in	time	of	a	length-	N	DFT	into	four	length-

DFTs	followed	by	a	combining	stage.

Due	to	the	periodicity	with	of	the	short-length	DFTs,	their	outputs	for	frequency-sample	k	are

reused	to	compute	X(	k)	,

,

,	and

.	It	is	this	reuse	that	gives	the	radix-4	FFT	its

efficiency.	The	computations	involved	with	each	group	of	four	frequency	samples	constitute	the

radix-4	butterfly,	which	is	shown	in	Figure	3.37.	Through	further	rearrangement,	it	can	be	shown	that
this	computation	can	be	simplified	to	three	twiddle-factor	multiplies	and	a	length-4	DFT!	The

theory	of	multi-dimensional	index	maps	shows	that	this	must	be	the	case,	and	that	FFTs	of	any
factorable	length	may	consist	of	successive	stages	of	shorter-length	FFTs	with	twiddle-factor

multiplications	in	between.	The	length-4	DFT	requires	no	multiplies	and	only	eight	complex

additions	(this	efficient	computation	can	be	derived	using	a	radix-2	FFT).

(a)
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(b)

Figure	3.37.

The	radix-4	DIT	butterfly	can	be	simplified	to	a	length-4	DFT	preceded	by	three	twiddle-factor
multiplies.

If	the	FFT	length	N=4	M	,	the	shorter-length	DFTs	can	be	further	decomposed	recursively	in	the

same	manner	to	produce	the	full	radix-4	decimation-in-time	FFT.	As	in	the	radix-2	decimation-

in-time	FFT,	each	stage	of	decomposition	creates	additional	savings	in	computation.	To

determine	the	total	computational	cost	of	the	radix-4	FFT,	note	that	there	are

stages,	each	with	butterflies	per	stage.	Each	radix-4	butterfly	requires	3	complex	multiplies	and

8	complex	additions.	The	total	cost	is	then

Radix-4	FFT	Operation	Counts

complex	multiplies	(75%	of	a	radix-2	FFT)

complex	adds	(same	as	a	radix-2	FFT)

The	radix-4	FFT	requires	only	75%	as	many	complex	multiplies	as	the	radix-2	FFTs,	although	it	uses
the	same	number	of	complex	additions.	These	additional	savings	make	it	a	widely-used	FFT

algorithm.

The	decimation-in-time	operation	regroups	the	input	samples	at	each	successive	stage	of

decomposition,	resulting	in	a	"digit-reversed"	input	order.	That	is,	if	the	time-sample	index	n	is

written	as	a	base-4	number,	the	order	is	that	base-4	number	reversed.	The	digit-reversal	process	is

illustrated	for	a	length-	N=64	example	below.

Example	3.4.	N	=	64	=	4^3

Table	3.2.

Original

Original	Digit

Reversed	Digit

Digit-Reversed



Number

Order

Order

Number

0

000

000

0

1

001

100

16

2

002

200

32

3

003

300

48

4

010

010

4

5



011

110

20

⋮

⋮

⋮

⋮

It	is	important	to	note	that,	if	the	input	signal	data	are	placed	in	digit-reversed	order	before

beginning	the	FFT	computations,	the	outputs	of	each	butterfly	throughout	the	computation	can	be

placed	in	the	same	memory	locations	from	which	the	inputs	were	fetched,	resulting	in	an	in-place

algorithm	that	requires	no	extra	memory	to	perform	the	FFT.	Most	FFT	implementations	are	in-

place,	and	overwrite	the	input	data	with	the	intermediate	values	and	finally	the	output.	A	slight

rearrangement	within	the	radix-4	FFT	introduced	by	Burrus	[link]	allows	the	inputs	to	be	arranged	in
bit-reversed	rather	than	digit-reversed	order.

A	radix-4	decimation-in-frequency	FFT	can	be	derived	similarly	to	the	radix-2	DIF	FFT,	by
separately	computing	all	four	groups	of	every	fourth	output	frequency	sample.	The	DIF	radix-4

FFT	is	a	flow-graph	reversal	of	the	DIT	radix-4	FFT,	with	the	same	operation	counts	and	twiddle

factors	in	the	reversed	order.	The	output	ends	up	in	digit-reversed	order	for	an	in-place	DIF

algorithm.

Exercise	5.

How	do	we	derive	a	radix-4	algorithm	when	N=4	M	2	?

Perform	a	radix-2	decomposition	for	one	stage,	then	radix-4	decompositions	of	all	subsequent

shorter-length	DFTs.
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Split-radix	FFT	Algorithms*

The	split-radix	algorithm,	first	clearly	described	and	named	by	Duhamel	and	Hollman	[link]	in	1984,
required	fewer	total	multiply	and	add	operations	operations	than	any	previous	power-of-two

algorithm.	(	Yavne	[link]	first	derived	essentially	the	same	algorithm	in	1968,	but	the	description	was	so
atypical	that	the	work	was	largely	neglected.)	For	a	time	many	FFT	experts	thought	it	to	be

optimal	in	terms	of	total	complexity,	but	even	more	efficient	variations	have	more	recently	been

discovered	by	Johnson	and	Frigo	[link].

The	split-radix	algorithm	can	be	derived	by	careful	examination	of	the	radix-2	and	radix-4

flowgraphs	as	in	Figure	1	below.	While	in	most	places	the	radix-4	algorithm	has	fewer	nontrivial
twiddle	factors,	in	some	places	the	radix-2	actually	lacks	twiddle	factors	present	in	the	radix-4

structure	or	those	twiddle	factors	simplify	to	multiplication	by	–	ⅈ	,	which	actually	requires	only

additions.	By	mixing	radix-2	and	radix-4	computations	appropriately,	an	algorithm	of	lower
complexity	than	either	can	be	derived.

<db:title>radix-2</db:title>

<db:title>radix-4</db:title>





(b)

(a)



Figure	3.38.	Motivation	for	split-radix	algorithm

See	Decimation-in-Time	(DIT)	Radix-2	FFT	and	Radix-4	FFT	Algorithms	for	more	information	on
these	algorithms.

An	alternative	derivation	notes	that	radix-2	butterflies	of	the	form	shown	in	Figure	2	can	merge

twiddle	factors	from	two	successive	stages	to	eliminate	one-third	of	them;	hence,	the	split-radix

algorithm	requires	only	about	two-thirds	as	many	multiplications	as	a	radix-2	FFT.

(a)

(b)

Figure	3.39.

Note	that	these	two	butterflies	are	equivalent

The	split-radix	algorithm	can	also	be	derived	by	mixing	the	radix-2	and	radix-4	decompositions.

(3.3)

DIT	Split-radix	derivation

Figure	3	illustrates	the	resulting	split-radix	butterfly.

Figure	3.40.	Decimation-in-Time	Split-Radix	Butterfly

The	split-radix	butterfly	mixes	radix-2	and	radix-4	decompositions	and	is	L-shaped

Further	decomposition	of	the	half-	and	quarter-length	DFTs	yields	the	full	split-radix	algorithm.

The	mix	of	different-length	FFTs	in	different	parts	of	the	flowgraph	results	in	a	somewhat



irregular	algorithm;	Sorensen	et	al.	[link]	show	how	to	adjust	the	computation	such	that	the	data	retains
the	simpler	radix-2	bit-reverse	order.	A	decimation-in-frequency	split-radix	FFT	can	be

derived	analogously.

Figure	3.41.

The	split-radix	transform	has	L-shaped	butterflies

The	multiplicative	complexity	of	the	split-radix	algorithm	is	only	about	two-thirds	that	of	the

radix-2	FFT,	and	is	better	than	the	radix-4	FFT	or	any	higher	power-of-two	radix	as	well.	The

additions	within	the	complex	twiddle-factor	multiplies	are	similarly	reduced,	but	since	the

underlying	butterfly	tree	remains	the	same	in	all	power-of-two	algorithms,	the	butterfly	additions

remain	the	same	and	the	overall	reduction	in	additions	is	much	less.

Table	3.3.	Operation	Counts

Complex	M/As	Real	M/As	(4/2)

Real	M/As	(3/3)



Multiplies

N	log2	N−3	N+4

Additions	O[	N	log2	N]

3	N	log2	N−3	N+4

Comments

The	split-radix	algorithm	has	a	somewhat	irregular	structure.	Successful	progams	have	been

written	(	Sorensen	[link])	for	uni-processor	machines,	but	it	may	be	difficult	to	efficiently	code	the
split-radix	algorithm	for	vector	or	multi-processor	machines.

G.	Bruun's	algorithm	[link]	requires	only	N−2	more	operations	than	the	split-radix	algorithm	and	has	a
regular	structure,	so	it	might	be	better	for	multi-processor	or	special-purpose

hardware.

The	execution	time	of	FFT	programs	generally	depends	more	on	compiler-	or	hardware-

The	execution	time	of	FFT	programs	generally	depends	more	on	compiler-	or	hardware-

friendly	software	design	than	on	the	exact	computational	complexity.	See	Efficient	FFT

Algorithm	and	Programming	Tricks	for	further	pointers	and	links	to	good	code.
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Efficient	FFT	Algorithm	and	Programming	Tricks*

The	use	of	FFT	algorithms	such	as	the	radix-2	decimation-in-time	or	decimation-in-frequency

methods	result	in	tremendous	savings	in	computations	when	computing	the	discrete	Fourier

transform.	While	most	of	the	speed-up	of	FFTs	comes	from	this,	careful	implementation	can

provide	additional	savings	ranging	from	a	few	percent	to	several-fold	increases	in	program	speed.

Precompute	twiddle	factors

The	twiddle	factor,	or

,	terms	that	multiply	the	intermediate	data	in	the	FFT

algorithms	consist	of	cosines	and	sines	that	each	take	the	equivalent	of	several	multiplies	to	compute.
However,	at	most	N	unique	twiddle	factors	can	appear	in	any	FFT	or	DFT	algorithm.

(For	example,	in	the	radix-2	decimation-in-time	FFT,	only	twiddle	factors

are	used.)	These	twiddle	factors	can	be	precomputed	once	and	stored	in	an

array	in	computer	memory,	and	accessed	in	the	FFT	algorithm	by	table	lookup.	This	simple

technique	yields	very	substantial	savings	and	is	almost	always	used	in	practice.

Compiler-friendly	programming

On	most	computers,	only	some	of	the	total	computation	time	of	an	FFT	is	spent	performing	the

FFT	butterfly	computations;	determining	indices,	loading	and	storing	data,	computing	loop

parameters	and	other	operations	consume	the	majority	of	cycles.	Careful	programming	that	allows

the	compiler	to	generate	efficient	code	can	make	a	several-fold	improvement	in	the	run-time	of	an

FFT.	The	best	choice	of	radix	in	terms	of	program	speed	may	depend	more	on	characteristics	of

the	hardware	(such	as	the	number	of	CPU	registers)	or	compiler	than	on	the	exact	number	of

computations.	Very	often	the	manufacturer's	library	codes	are	carefully	crafted	by	experts	who

know	intimately	both	the	hardware	and	compiler	architecture	and	how	to	get	the	most



performance	out	of	them,	so	use	of	well-written	FFT	libraries	is	generally	recommended.	Certain

freely	available	programs	and	libraries	are	also	very	good.	Perhaps	the	best	current	general-

purpose	library	is	the	FFTW	package;	information	can	be	found	at	http://www.fftw.org.	A	paper	by
Frigo	and	Johnson	[link]	describes	many	of	the	key	issues	in	developing	compiler-friendly	code.

Program	in	assembly	language

While	compilers	continue	to	improve,	FFT	programs	written	directly	in	the	assembly	language	of

a	specific	machine	are	often	several	times	faster	than	the	best	compiled	code.	This	is	particularly

true	for	DSP	microprocessors,	which	have	special	instructions	for	accelerating	FFTs	that

compilers	don't	use.	(I	have	myself	seen	differences	of	up	to	26	to	1	in	favor	of	assembly!)	Very

often,	FFTs	in	the	manufacturer's	or	high-performance	third-party	libraries	are	hand-coded	in

assembly.	For	DSP	microprocessors,	the	codes	developed	by	Meyer,	Schuessler,	and	Schwarz

[link]	are	perhaps	the	best	ever	developed;	while	the	particular	processors	are	now	obsolete,	the
techniques	remain	equally	relevant	today.	Most	DSP	processors	provide	special	instructions	and	a

hardware	design	favoring	the	radix-2	decimation-in-time	algorithm,	which	is	thus	generally

fastest	on	these	machines.

Special	hardware

Some	processors	have	special	hardware	accelerators	or	co-processors	specifically	designed	to

accelerate	FFT	computations.	For	example,	AMI	Semiconductor's	Toccata	ultra-low-power	DSP

microprocessor	family,	which	is	widely	used	in	digital	hearing	aids,	have	on-chip	FFT

accelerators;	it	is	always	faster	and	more	power-efficient	to	use	such	accelerators	and	whatever

radix	they	prefer.

In	a	surprising	number	of	applications,	almost	all	of	the	computations	are	FFTs.	A	number	of

special-purpose	chips	are	designed	to	specifically	compute	FFTs,	and	are	used	in	specialized	high-

performance	applications	such	as	radar	systems.	Other	systems,	such	as	OFDM-based	communications
receivers,	have	special	FFT	hardware	built	into	the	digital	receiver	circuit.	Such

hardware	can	run	many	times	faster,	with	much	less	power	consumption,	than	FFT	programs	on

general-purpose	processors.

http://www.fftw.org
http://www.fftw.org
http://www.amis.com
http://www.amis.com/products/dsp/toccata_plus.html
http://en.wikipedia.org/wiki/OFDM


Effective	memory	management

Cache	misses	or	excessive	data	movement	between	registers	and	memory	can	greatly	slow	down

an	FFT	computation.	Efficient	programs	such	as	the	FFTW	package	are	carefully	designed	to	minimize
these	inefficiences.	In-place	algorithms	reuse	the	data	memory	throughout	the

transform,	which	can	reduce	cache	misses	for	longer	lengths.

Real-valued	FFTs

FFTs	of	real-valued	signals	require	only	half	as	many	computations	as	with	complex-valued	data.

There	are	several	methods	for	reducing	the	computation,	which	are	described	in	more	detail	in

Sorensen	et	al.	[link]

1.	Use	DFT	symmetry	properties	to	do	two	real-valued	DFTs	at	once	with	one	FFT	program

2.	Perform	one	stage	of	the	radix-2	decimation-in-time	decomposition	and	compute	the	two

length-	DFTs	using	the	above	approach.

3.	Use	a	direct	real-valued	FFT	algorithm;	see	H.V.	Sorensen	et.al.	[link]

Special	cases

Occasionally	only	certain	DFT	frequencies	are	needed,	the	input	signal	values	are	mostly	zero,	the

signal	is	real-valued	(as	discussed	above),	or	other	special	conditions	exist	for	which	faster

algorithms	can	be	developed.	Sorensen	and	Burrus	[link]	describe	slightly	faster	algorithms	for

pruned	or	zero-padded	data.	Goertzel's	algorithm	is	useful	when	only	a	few	DFT	outputs	are	needed.
The	running	FFT	can	be	faster	when	DFTs	of	highly	overlapped	blocks	of	data	are

needed,	as	in	a	spectrogram.

Higher-radix	algorithms

Higher-radix	algorithms,	such	as	the	radix-4,	radix-8,	or	split-radix	FFTs,	require	fewer	computations
and	can	produce	modest	but	worthwhile	savings.	Even	the	split-radix	FFT	reduces

the	multiplications	by	only	33%	and	the	additions	by	a	much	lesser	amount	relative	to	the	radix-2

FFTs;	significant	improvements	in	program	speed	are	often	due	to	implicit	loop-unrolling	or

other	compiler	benefits	than	from	the	computational	reduction	itself!

http://www.fftw.org
http://www.fftw.org/pruned.html


Fast	bit-reversal

Bit-reversing	the	input	or	output	data	can	consume	several	percent	of	the	total	run-time	of	an	FFT

program.	Several	fast	bit-reversal	algorithms	have	been	developed	that	can	reduce	this	to	two

percent	or	less,	including	the	method	published	by	D.M.W.	Evans	[link].

Trade	additions	for	multiplications

When	FFTs	first	became	widely	used,	hardware	multipliers	were	relatively	rare	on	digital

computers,	and	multiplications	generally	required	many	more	cycles	than	additions.	Methods	to

reduce	multiplications,	even	at	the	expense	of	a	substantial	increase	in	additions,	were	often

beneficial.	The	prime	factor	algorithms	and	the	Winograd	Fourier	transform	algorithms,

which	required	fewer	multiplies	and	considerably	more	additions	than	the	power-of-two-length

algorithms,	were	developed	during	this	period.	Current	processors	generally	have	high-speed

pipelined	hardware	multipliers,	so	trading	multiplies	for	additions	is	often	no	longer	beneficial.	In

particular,	most	machines	now	support	single-cycle	multiply-accumulate	(MAC)	operations,	so

balancing	the	number	of	multiplies	and	adds	and	combining	them	into	single-cycle	MACs

generally	results	in	the	fastest	code.	Thus,	the	prime-factor	and	Winograd	FFTs	are	rarely	used

today	unless	the	application	requires	FFTs	of	a	specific	length.

It	is	possible	to	implement	a	complex	multiply	with	3	real	multiplies	and	5	real	adds	rather	than

the	usual	4	real	multiplies	and	2	real	adds:	(	C+	ⅈS)(	X+	ⅈY)=	CX−	SY+	ⅈ(	CY+	SX)	but	alernatively	Z=
C(	X−	Y)	D=	C+	S	E=	C−	S	CX−	SY=	EY+	Z	CY+	SX=	DX−	Z	In	an	FFT,	D	and	E	come	entirely	from	the
twiddle	factors,	so	they	can	be	precomputed	and	stored	in	a	look-up	table.	This	reduces

http://cnx.org/content/m12033/latest/


the	cost	of	the	complex	twiddle-factor	multiply	to	3	real	multiplies	and	3	real	adds,	or	one	less

and	one	more,	respectively,	than	the	conventional	4/2	computation.

Special	butterflies

Certain	twiddle	factors,	namely	W	0

N	=1	,

,

,

,

,	etc.,	can	be	implemented	with	no

additional	operations,	or	with	fewer	real	operations	than	a	general	complex	multiply.	Programs

that	specially	implement	such	butterflies	in	the	most	efficient	manner	throughout	the	algorithm

can	reduce	the	computational	cost	by	up	to	several	N	multiplies	and	additions	in	a	length-	N	FFT.

Practical	Perspective

When	optimizing	FFTs	for	speed,	it	can	be	important	to	maintain	perspective	on	the	benefits	that

can	be	expected	from	any	given	optimization.	The	following	list	categorizes	the	various

techniques	by	potential	benefit;	these	will	be	somewhat	situation-	and	machine-dependent,	but

clearly	one	should	begin	with	the	most	significant	and	put	the	most	effort	where	the	pay-off	is

likely	to	be	largest.

Methods	to	speed	up	computation	of	DFTs

Tremendous	Savings:

1.	FFT	(

savings)

Substantial	Savings:	(	≥	2	)

1.	Table	lookup	of	cosine/sine

2.	Compiler	tricks/good	programming



3.	Assembly-language	programming

4.	Special-purpose	hardware

5.	Real-data	FFT	for	real	data	(factor	of	2)

6.	Special	cases

Minor	Savings:

1.	radix-4,	split-radix	(-10%	-	+30%)

2.	special	butterflies

3.	3-real-multiplication	complex	multiply

4.	Fast	bit-reversal	(up	to	6%)

Fact

On	general-purpose	machines,	computation	is	only	part	of	the	total	run	time.	Address

generation,	indexing,	data	shuffling,	and	memory	access	take	up	much	or	most	of	the	cycles.

Fact

A	well-written	radix-2	program	will	run	much	faster	than	a	poorly	written	split-radix

program!
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3.4.	Fast	Convolution*

Fast	Circular	Convolution

Since,

y(	n)	can	be	computed	as

y(	n)=IDFT[DFT[	x(	n)]DFT[	h(	n)]]

Cost

Direct

N2	complex	multiplies.

N(	N−	1)	complex	adds.

Via	FFTs

3	FFTs	+	N	multipies.

complex	multiplies.

3(	N	log2	N)	complex	adds.

If	H(	k)	can	be	precomputed,	cost	is	only	2	FFts	+	N	multiplies.

Fast	Linear	Convolution



DFT	produces	cicular	convolution.	For	linear	convolution,	we	must	zero-pad	sequences	so	that

circular	wrap-around	always	wraps	over	zeros.

Figure	3.42.

To	achieve	linear	convolution	using	fast	circular	convolution,	we	must	use	zero-padded	DFTs	of

length	N≥	L+	M−1

Figure	3.43.

Choose	shortest	convenient	N	(usually	smallest	power-of-two	greater	than	or	equal	to	L+	M−1	)

y(	n)=IDFT	N[DFT	N[	x(	n)]DFT	N[	h(	n)]]

There	is	some	inefficiency	when	compared	to	circular	convolution	due	to	longer	zero-padded

DFTs.	Still,

savings	over	direct	computation.

Running	Convolution

Suppose	L=∞	,	as	in	a	real	time	filter	application,	or	(	L	≫	M)	.	There	are	efficient	block	methods

for	computing	fast	convolution.



Overlap-Save	(OLS)	Method

Note	that	if	a	length-	M	filter	h(	n)	is	circularly	convulved	with	a	length-	N	segment	of	a	signal

x(	n)	,

Figure	3.44.

the	first	M−1	samples	are	wrapped	around	and	thus	is	incorrect.	However,	for	M−1≤	n≤	N−1	,the
convolution	is	linear	convolution,	so	these	samples	are	correct.	Thus	N−	M+1	good	outputs	are

produced	for	each	length-	N	circular	convolution.

The	Overlap-Save	Method:	Break	long	signal	into	successive	blocks	of	N	samples,	each	block

overlapping	the	previous	block	by	M−1	samples.	Perform	circular	convolution	of	each	block	with

filter	h(	m)	.	Discard	first	M−1	points	in	each	output	block,	and	concatenate	the	remaining	points

to	create	y(	n)	.



Figure	3.45.

Computation	cost	for	a	length-	N	equals	2	n	FFT	per	output	sample	is	(assuming	precomputed

H(	k)	)	2	FFTs	and	N	multiplies

Compare	to	M	mults,	M−1	adds	per	output	point	for	direct	method.	For	a	given	M	,	optimal	N	can

be	determined	by	finding	N	minimizing	operation	counts.	Usualy,	optimal	N	is	4	M≤	N	opt≤8	M	.

Overlap-Add	(OLA)	Method

Zero-pad	length-	L	blocks	by	M−1	samples.



Figure	3.46.

Add	successive	blocks,	overlapped	by	M−1	samples,	so	that	the	tails	sum	to	produce	the	complete

linear	convolution.

Figure	3.47.

Computational	Cost:	Two	length	N=	L+	M−1	FFTs	and	M	mults	and	M−1	adds	per	L	output	points;
essentially	the	sames	as	OLS	method.



3.5.	Chirp-z	Transform*

Let	zk=	AW–	k	,	where	A=	Aoⅇⅈθo	,	W=	Woⅇ–(	ⅈφo)	.

We	wish	to	compute	M	samples,	k=[0,	1,	2,	…,	M−1]	of

Figure	3.48.

Note	that



,	So

Thus,	X(	zk)	can	be	compared	by

1.	Premultiply	x(	n)	by

,	n=[	0	,	1,	…,	N−1]	to	make	y(	n)

2.	Linearly	convolve	with



3.	Post	multiply	by	to	get

to	get	X(	zk)	.

1.	and	3.	require	N	and	M	operations	respectively.	2.	can	be	performed	efficiently	using	fast
convolution.

Figure	3.49.

is	required	only	for	–((	N−1))≤	n≤	M−1	,	so	this	linear	convolution	can	be	implemented	with

L≥	N+	M−1	FFTs.

Wrap

around	L	when	implementing	with	circular	convolution.

So,	a	weird-length	DFT	can	be	implemented	relatively	efficiently	using	power-of-two	algorithms	via
the	chirp-z	transform.

Also	useful	for	"zoom-FFTs".

3.6.	FFTs	of	prime	length	and	Rader's	conversion*

The	power-of-two	FFT	algorithms,	such	as	the	radix-2	and	radix-4	FFTs,	and	the	common-

factor	and	prime-factor	FFTs,	achieve	great	reductions	in	computational	complexity	of	the	DFT

when	the	length,	N,	is	a	composite	number.	DFTs	of	prime	length	are	sometimes	needed,	however,

particularly	for	the	short-length	DFTs	in	common-factor	or	prime-factor	algorithms.	The	methods

described	here,	along	with	the	composite-length	algorithms,	allow	fast	computation	of	DFTs	of

any	length.

There	are	two	main	ways	of	performing	DFTs	of	prime	length:

1.	Rader's	conversion,	which	is	most	efficient,	and	the

2.	Chirp-z	transform,	which	is	simpler	and	more	general.

Oddly	enough,	both	work	by	turning	prime-length	DFTs	into	convolution!	The	resulting

convolutions	can	then	be	computed	efficiently	by	either

http://cnx.org/content/12032/latest/#DFTequation
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1.	fast	convolution	via	composite-length	FFTs	(simpler)	or	by

2.	Winograd	techniques	(more	efficient)

Rader's	Conversion

Rader's	conversion	is	a	one-dimensional	index-mapping	scheme	that	turns	a	length-	N	DFT	(	N

prime)	into	a	length-(	N−1	)	convolution	and	a	few	additions.	Rader's	conversion	works	only	for

prime-length	N.

An	index	map	simply	rearranges	the	order	of	the	sum	operation	in	the	DFT	definition.	Because
addition	is	a	commutative	operation,	the	same	mathematical	result	is	produced	from	any	order,	as

long	as	all	of	the	same	terms	are	added	once	and	only	once.	(This	is	the	condition	that	defines	an

index	map.)	Unlike	the	multi-dimensional	index	maps	used	in	deriving	common	factor	and

prime-factor	FFTs,	Rader's	conversion	uses	a	one-dimensional	index	map	in	a	finite	group	of	N

integers:	k=(	rm)mod	N

Fact	from	number	theory

If	N	is	prime,	there	exists	an	integer	"	r"	called	a	primitive	root,	such	that	the	index	map

k=(	rm)mod	N	,	m=[0,	1,	2,	…,	N−2]	,	uniquely	generates	all	elements	k=[1,	2,	3,	…,	N−1]

Example	3.5.

N=5	,	r=2	(20)mod5=1	(21)mod5=2	(22)mod5=4	(23)mod5=3

Another	fact	from	number	theory

For	N	prime,	the	inverse	of	r	(i.e.	(	r-1	r)mod	N=1	is	also	a	primitive	root	(call	it	r-1	).

Example	3.6.

http://cnx.org/content/m12025/latest/
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N=5	,	r=2	r-1=3	(2×3)mod5=1	(30)mod5=1	(31)mod5=3	(32)mod5=4	(33)mod5=2

So	why	do	we	care?	Because	we	can	use	these	facts	to	turn	a	DFT	into	a	convolution!

Rader's	Conversion

Let	n=(	r–	m)mod	N	,	m=[0,	1,	…,	N−2]∧	n∈[1,	2,	…,	N−1]	,	k=(	rp)mod	N	,	p=[0,	1,	…,	N−2]∧	k∈[1,
2,	…,	N−1]

where	for	convenience

in	the	DFT	equation.	For	k≠0

()

where	l=[0,	1,	…,	N−2]

Example	3.7.

N=5	,	r=2	,	r-1=3

where	for	visibility	the	matrix

entries	represent	only	the	power,	m	of	the	corresponding	DFT	term	W	m

N	Note	that	the	4-by-4

circulant	matrix

corresponds	to	a	length-4	circular	convolution.

Rader's	conversion	turns	a	prime-length	DFT	into	a	few	adds	and	a	composite-length	(	N−1	)	circular
convolution,	which	can	be	computed	efficiently	using	either

1.	fast	convolution	via	FFT	and	IFFT

http://en.wikipedia.org/wiki/Circulant_matrix


2.	index-mapped	convolution	algorithms	and	short	Winograd	convolution	alogrithms.	(Rather

complicated,	and	trades	fewer	multiplies	for	many	more	adds,	which	may	not	be	worthwile	on

most	modern	processors.)	See	R.C.	Agarwal	and	J.W.	Cooley	[link]

Winograd	minimum-multiply	convolution	and	DFT	algorithms

S.	Winograd	has	proved	that	a	length-	N	circular	or	linear	convolution	or	DFT	requires	less	than	2	N
multiplies	(for	real	data),	or	4	N	real	multiplies	for	complex	data.	(This	doesn't	count

multiplies	by	rational	fractions,	like	3	or	or	,	which	can	be	computed	with	additions	and	one

overall	scaling	factor.)	Furthermore,	Winograd	showed	how	to	construct	algorithms	achieving

these	counts.	Winograd	prime-length	DFTs	and	convolutions	have	the	following	characteristics:

1.	Extremely	efficient	for	small	N	(	N<20	)

2.	The	number	of	adds	becomes	huge	for	large	N.

Thus	Winograd's	minimum-multiply	FFT's	are	useful	only	for	small	N.	They	are	very	important

for	Prime-Factor	Algorithms,	which	generally	use	Winograd	modules	to	implement	the	short-length
DFTs.	Tables	giving	the	multiplies	and	adds	necessary	to	compute	Winograd	FFTs	for

various	lengths	can	be	found	in	C.S.	Burrus	(1988)	[link].	Tables	and	FORTRAN	and	TMS32010

programs	for	these	short-length	transforms	can	be	found	in	C.S.	Burrus	and	T.W.	Parks	(1985)

[link].	The	theory	and	derivation	of	these	algorithms	is	quite	elegant	but	requires	substantial
background	in	number	theory	and	abstract	algebra.	Fortunately	for	the	practitioner,	all	of	the	short

algorithms	one	is	likely	to	need	have	already	been	derived	and	can	simply	be	looked	up	without

mastering	the	details	of	their	derivation.

Winograd	Fourier	Transform	Algorithm	(WFTA)

The	Winograd	Fourier	Transform	Algorithm	(WFTA)	is	a	technique	that	recombines	the	short

Winograd	modules	in	a	prime-factor	FFT	into	a	composite-	N	structure	with	fewer	multiplies	but	more
adds.	While	theoretically	interesting,	WFTAs	are	complicated	and	different	for	every	length,

and	on	modern	processors	with	hardware	multipliers	the	trade	of	multiplies	for	many	more	adds	is

http://cnx.org/content/m12033/latest/
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very	rarely	useful	in	practice	today.
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3.7.	Choosing	the	Best	FFT	Algorithm*

3.7.	Choosing	the	Best	FFT	Algorithm*

Choosing	an	FFT	length

The	most	commonly	used	FFT	algorithms	by	far	are	the	power-of-two-length	FFT	algorithms.

The	Prime	Factor	Algorithm	(PFA)	and	Winograd	Fourier	Transform	Algorithm	(WFTA)

require	somewhat	fewer	multiplies,	but	the	overall	difference	usually	isn't	sufficient	to	warrant

the	extra	difficulty.	This	is	particularly	true	now	that	most	processors	have	single-cycle	pipelined

hardware	multipliers,	so	the	total	operation	count	is	more	relevant.	As	can	be	seen	from	the

following	table,	for	similar	lengths	the	split-radix	algorithm	is	comparable	in	total	operations	to

the	Prime	Factor	Algorithm,	and	is	considerably	better	than	the	WFTA,	although	the	PFA	and

WTFA	require	fewer	multiplications	and	more	additions.	Many	processors	now	support	single

cycle	multiply-accumulate	(MAC)	operations;	in	the	power-of-two	algorithms	all	multiplies	can

be	combined	with	adds	in	MACs,	so	the	number	of	additions	is	the	most	relevant	indicator	of

computational	cost.

Table	3.4.	Representative	FFT	Operation	Counts

FFT	length	Multiplies	(real)	Adds(real)	Mults	+	Adds

Radix	2

http://cnx.org/content/m12033/latest/


1024

10248

30728

40976

Split	Radix

1024

7172

27652

34824

Prime	Factor	Alg	1008

5804

29100

34904

Winograd	FT	Alg	1008

3548

34416

37964

The	Winograd	Fourier	Transform	Algorithm	is	particularly	difficult	to	program	and	is	rarely

used	in	practice.	For	applications	in	which	the	transform	length	is	somewhat	arbitrary	(such	as

fast	convolution	or	general	spectrum	analysis),	the	length	is	usually	chosen	to	be	a	power	of	two.

When	a	particular	length	is	required	(for	example,	in	the	USA	each	carrier	has	exactly	416

frequency	channels	in	each	band	in	the	AMPS	cellular	telephone	standard),	a	Prime	Factor

Algorithm	for	all	the	relatively	prime	terms	is	preferred,	with	a	Common	Factor	Algorithm	for	other
non-prime	lengths.	Winograd's	short-length	modules	should	be	used	for	the	prime-length	factors	that
are	not	powers	of	two.	The	chirp	z-transform	offers	a	universal	way	to	compute	any	length	DFT	(for
example,	Matlab	reportedly	uses	this	method	for	lengths	other	than	a	power	of	two),	at	a	few	times
higher	cost	than	that	of	a	CFA	or	PFA	optimized	for	that	specific	length.	The

http://cnx.org/content/m12033/latest/
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chirp	z-transform,	along	with	Rader's	conversion,	assure	us	that	algorithms	of	O(	NlogN)	complexity
exist	for	any	DFT	length	N	.

Selecting	a	power-of-two-length	algorithm

The	choice	of	a	power-of-two	algorithm	may	not	just	depend	on	computational	complexity.	The

latest	extensions	of	the	split-radix	algorithm	offer	the	lowest	known	power-of-two	FFT	operation
counts,	but	the	10%-30%	difference	may	not	make	up	for	other	factors	such	as	regularity	of

structure	or	data	flow,	FFT	programming	tricks,	or	special	hardware	features.	For	example,	the

decimation-in-time	radix-2	FFT	is	the	fastest	FFT	on	Texas	Instruments'	TMS320C54x	DSP

microprocessors,	because	this	processor	family	has	special	assembly-language	instructions	that

accelerate	this	particular	algorithm.	On	other	hardware,	radix-4	algorithms	may	be	more

efficient.	Some	devices,	such	as	AMI	Semiconductor's	Toccata	ultra-low-power	DSP

microprocessor	family,	have	on-chip	FFT	accelerators;	it	is	always	faster	and	more	power-

efficient	to	use	these	accelerators	and	whatever	radix	they	prefer.	For	fast	convolution,	the

decimation-in-frequency	algorithms	may	be	preferred	because	the	bit-reversing	can	be	bypassed;
however,	most	DSP	microprocessors	provide	zero-overhead	bit-reversed	indexing	hardware	and

prefer	decimation-in-time	algorithms,	so	this	may	not	be	true	for	such	machines.	Good,	compiler-

or	hardware-friendly	programming	always	matters	more	than	modest	differences	in	raw	operation

counts,	so	manufacturers'	or	good	third-party	FFT	libraries	are	often	the	best	choice.	The	module

FFT	programming	tricks	references	some	good,	free	FFT	software	(including	the	FFTW

package)	that	is	carefully	coded	to	be	compiler-friendly;	such	codes	are	likely	to	be	considerably

faster	than	codes	written	by	the	casual	programmer.

Multi-dimensional	FFTs

Multi-dimensional	FFTs	pose	additional	possibilities	and	problems.	The	orthogonality	and

separability	of	multi-dimensional	DFTs	allows	them	to	be	efficiently	computed	by	a	series	of	one-

dimensional	FFTs	along	each	dimension.	(For	example,	a	two-dimensional	DFT	can	quickly	be

computed	by	performing	FFTs	of	each	row	of	the	data	matrix	followed	by	FFTs	of	all	columns,	or

vice-versa.)	Vector-radix	FFTs	have	been	developed	with	higher	efficiency	per	sample	than	row-

http://www.ti.com/
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column	algorithms.	Multi-dimensional	datasets,	however,	are	often	large	and	frequently	exceed

the	cache	size	of	the	processor,	and	excessive	cache	misses	may	increase	the	computational	time

greatly,	thus	overwhelming	any	minor	complexity	reduction	from	a	vector-radix	algorithm.	Either

vector-radix	FFTs	must	be	carefully	programmed	to	match	the	cache	limitations	of	a	specific

processor,	or	a	row-column	approach	should	be	used	with	matrix	transposition	in	between	to

ensure	data	locality	for	high	cache	utilization	throughout	the	computation.

Few	time	or	frequency	samples

FFT	algorithms	gain	their	efficiency	through	intermediate	computations	that	can	be	reused	to

compute	many	DFT	frequency	samples	at	once.	Some	applications	require	only	a	handful	of

frequency	samples	to	be	computed;	when	that	number	is	of	order	less	than	O(	logN)	,	direct

computation	of	those	values	via	Goertzel's	algorithm	is	faster.	This	has	the	additional	advantage	that
any	frequency,	not	just	the	equally-spaced	DFT	frequency	samples,	can	be	selected.	Sorensen

and	Burrus	[link]	developed	algorithms	for	when	most	input	samples	are	zero	or	only	a	block	of	DFT
frequencies	are	needed,	but	the	computational	cost	is	of	the	same	order.

Some	applications,	such	as	time-frequency	analysis	via	the	short-time	Fourier	transform	or

spectrogram,	require	DFTs	of	overlapped	blocks	of	discrete-time	samples.	When	the	step-size

between	blocks	is	less	than	O(	logN)	,	the	running	FFT	will	be	most	efficient.	(Note	that	any

window	must	be	applied	via	frequency-domain	convolution,	which	is	quite	efficient	for	sinusoidal
windows	such	as	the	Hamming	window.	)	For	step-sizes	of	O(	logN)	or	greater,	computation	of	the
DFT	of	each	successive	block	via	an	FFT	is	faster.
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Chapter	4.	Wavelets

4.1.	Time	Frequency	Analysis	and	Continuous	Wavelet

Transform

Why	Transforms?	*

In	the	field	of	signal	processing	we	frequently	encounter	the	use	of	transforms.	Transforms	are

named	such	because	they	take	a	signal	and	transform	it	into	another	signal,	hopefully	one	which

is	easier	to	process	or	analyze	than	the	original.	Essentially,	transforms	are	used	to	manipulate

signals	such	that	their	most	important	characteristics	are	made	plainly	evident.	To	isolate	a

signal's	important	characteristics,	however,	one	must	employ	a	transform	that	is	well	matched	to

that	signal.	For	example,	the	Fourier	transform,	while	well	matched	to	certain	classes	of	signal,

does	not	efficiently	extract	information	about	signals	in	other	classes.	This	latter	fact	motivates

our	development	of	the	wavelet	transform.

Limitations	of	Fourier	Analysis*

Let's	consider	the	Continuous-Time	Fourier	Transform	(CTFT)	pair:

The	Fourier	transform	pair	supplies	us	with	our	notion	of	"frequency."	In	other

words,	all	of	our	intuitions	regarding	the	relationship	between	the	time	domain	and	the	frequency

domain	can	be	traced	to	this	particular	transform	pair.

It	will	be	useful	to	view	the	CTFT	in	terms	of	basis	elements.	The	inverse	CTFT	equation	above

says	that	the	time-domain	signal	x(	t)	can	be	expressed	as	a	weighted	summation	of	basis

elements	,	where	bΩ(	t)=	ⅇⅈΩt	is	the	basis	element	corresponding	to	frequency	Ω.	In	other	words,	the
basis	elements	are	parameterized	by	the	variable	Ω	that	we	call	frequency.	Finally,

X(	Ω)	specifies	the	weighting	coefficient	for	bΩ(	t)	.	In	the	case	of	the	CTFT,	the	number	of	basis
elements	is	uncountably	infinite,	and	thus	we	need	an	integral	to	express	the	summation.



The	Fourier	Series	(FS)	can	be	considered	as	a	special	sub-case	of	the	CTFT	that	applies	when	the

time-domain	signal	is	periodic.	Recall	that	if	x(	t)	is	periodic	with	period	T,	then	it	can	be

expressed	as	a	weighted	summation	of	basis	elements

,	where

:

Here	the	basis	elements	comes	from	a	countably-infinite	set,	parameterized

by	the	frequency	index	k∈ℤ	.	The	coefficients

specify	the	strength	of	the	corresponding

basis	elements	within	signal	x(	t)	.

Though	quite	popular,	Fourier	analysis	is	not	always	the	best	tool	to	analyze	a	signal	whose

characteristics	vary	with	time.	For	example,	consider	a	signal	composed	of	a	periodic	component

plus	a	sharp	"glitch"	at	time	t	0	,	illustrated	in	time-	and	frequency-domains,	Figure	4.1.

Figure	4.1.

Fourier	analysis	is	successful	in	reducing	the	complicated-looking	periodic	component	into	a	few

simple	parameters:	the	frequencies	and	their	corresponding	magnitudes/phases.	The	glitch



component,	described	compactly	in	terms	of	the	time-domain	location	t	0	and	amplitude,	however,

is	not	described	efficiently	in	the	frequency	domain	since	it	produces	a	wide	spread	of	frequency

components.	Thus,	neither	time-	nor	frequency-domain	representations	alone	give	an	efficient

description	of	the	glitched	periodic	signal:	each	representation	distills	only	certain	aspects	of	the

signal.

As	another	example,	consider	the	linear	chirp	x(	t)=sin(	Ωt	2)	illustrated	in	Figure	4.2.

Figure	4.2.

Though	written	using	the	sin(	·)	function,	the	chirp	is	not	described	by	a	single	Fourier	frequency.

We	might	try	to	be	clever	and	write	sin(	Ωt	2)=sin(	Ωt·t)=sin(	Ω(	t)	·t)	where	it	now	seems	that	signal
has	an	instantaneous	frequency	Ω(	t)=	Ωt	which	grows	linearly	in	time.	But	here	we	must	be

cautious!	Our	newly-defined	instantaneous	frequency	Ω(	t)	is	not	consistent	with	the	Fourier

notion	of	frequency.	Recall	that	the	CTFT	says	that	a	signal	can	be	constructed	as	a	superposition

of	fixed-frequency	basis	elements	ⅇⅈΩt	with	time	support	from	–∞	to	+∞	;	these	elements	are

evenly	spread	out	over	all	time,	and	so	there	is	noting	instantaneous	about	Fourier	frequency!	So,

while	instantaneous	frequency	gives	a	compact	description	of	the	linear	chirp,	Fourier	analysis	is

not	capable	of	uncovering	this	simple	structure.

As	a	third	example,	consider	a	sinusoid	of	frequency	Ω	0	that	is	rectangularly	windowed	to	extract

only	one	period	(Figure	4.3).

Figure	4.3.



Instantaneous-frequency	arguments	would	claim	that

where

Ω(	t)	takes	on	exactly	two	distinct	"frequency"	values.	In	contrast,	Fourier	theory	says	that

rectangular	windowing	induces	a	frequency-domain	spreading	by	a

profile,	resulting	in	a

continuum	of	Fourier	frequency	components.	Here	again	we	see	that	Fourier	analysis	does	not

efficiently	decompose	signals	whose	"instantaneous	frequency"	varies	with	time.

Time-Frequency	Uncertainty	Principle*

Recall	that	Fourier	basis	elements	bΩ(	t)=	ⅇⅈΩt	exhibit	poor	time	localization	abilities	-	a

consequence	of	the	fact	that	bΩ(	t)	is	evenly	spread	over	all	t∈(–∞,	∞)	.	By	time	localization	we

mean	the	ability	to	clearly	identify	signal	events	which	manifest	during	a	short	time	interval,	such

as	the	"glitch"	described	in	an	earlier	example.

At	the	opposite	extreme,	a	basis	composed	of	shifted	Dirac	deltas	bτ(	t)=	Δ(	t−	τ)	would	have	excellent
time	localization	but	terrible	"frequency	localization,"	since	every	Dirac	basis	element	is

evenly	spread	over	all	Fourier	frequencies	Ω∈[–∞,	∞]	.	This	can	be	seen	via

∀	Ω	,	regardless	of	τ.	By	frequency	localization	we	mean	the	ability	to

clearly	identify	signal	components	which	are	concentrated	at	particular	Fourier	frequencies,	such

as	sinusoids.

These	observations	motivate	the	question:	does	there	exist	a	basis	that	provides	both	excellent

frequency	localization	and	excellent	time	localization?	The	answer	is	"not	really":	there	is	a

fundamental	tradeoff	between	the	time	localization	and	frequency	localization	of	any	basis

element.	This	idea	is	made	concrete	below.

Let	us	consider	an	arbitrary	waveform,	or	basis	element,	b(	t)	.	Its	CTFT	will	be	denoted	by	B(	Ω)	.

Define	the	energy	of	the	waveform	to	be	E,	so	that	(by	Parseval's	theorem)

http://cnx.org/content/m11003/2.1/#figure1


Next,	define	the	temporal	and	spectral	centers	[1]	as

and	the	temporal	and	spectral	widths	[2]	as

If	the	waveform	is	well-localized	in	time,	then	b(	t)	will	be

concentrated	at	the	point	tc	and	Δt	will	be	small.	If	the	waveform	is	well-localized	in	frequency,

then	B(	Ω)	will	be	concentrated	at	the	point	Ωc	and	ΔΩ	will	be	small.	If	the	waveform	is	well-

localized	in	both	time	and	frequency,	then	ΔtΔΩ	will	be	small.	The	quantity	ΔtΔΩ	is	known	as	the

time-bandwidth	product.

From	the	definitions	above	one	can	derive	the	fundamental	properties	below.	When	interpreting

the	properties,	it	helps	to	think	of	the	waveform	b(	t)	as	a	prototype	that	can	be	used	to	generate	an

entire	basis	set.	For	example,	the	Fourier	basis

can	be	generated	by	frequency	shifts

of	b(	t)=1	,	while	the	Dirac	basis



can	be	generated	by	time	shifts	of	b(	t)=	δ(	t)

1.	Δt	and	ΔΩ	are	invariant	to	time	and	frequency	[3]	shifts.

Δt(	b(	t))=	Δt(	b(	t−	t	0))	,	t	0∈ℝ	ΔΩ(	B(	Ω))=	ΔΩ(	B(	Ω−	Ω	0))	,	Ω	0∈ℝ	This	implies	that	all	basis
elements	constructed	from	time	and/or	frequency	shifts	of	a	prototype	waveform	b(	t)	will

inherit	the	temporal	and	spectral	widths	of	b(	t)	.

2.	The	time-bandwidth	product	ΔtΔΩ	is	invariant	to	time-scaling.	[4]

ΔΩ(	b(	at))=|	a|	ΔΩ(	b(	t))	The	above	two	equations	imply

ΔtΔΩ(	b(	at))=	ΔtΔΩ(	b(	t))	,	a∈ℝ	Observe	that	time-domain	expansion	(	i.e.	,	|	a|<1	)	increases	the
temporal	width	but	decreases	the	spectral	width,	while	time-domain	contraction	(	i.e.	,

|	a|>1	)	does	the	opposite.	This	suggests	that	time-scaling	might	be	a	useful	tool	for	the	design

of	a	basis	element	with	a	particular	tradeoff	between	time	and	frequency	resolution.	On	the

other	hand,	scaling	cannot	simultaneously	increase	both	time	and	frequency	resolution.

3.	No	waveform	can	have	time-bandwidth	product	less	than	.

This	is	known	as	the

time-frequency	uncertainty	principle.

4.	The	Gaussian	pulse	g(	t)	achieves	the	minimum	time-bandwidth	product

.

Note	that	this	waveform	is	neither	bandlimited	nor	time-limited,	but	reasonable

concentrated	in	both	domains	(around	the	points	tc=0	and	Ωc=0	).

Properties	1	and	2	can	be	easily	verified	using	the	definitions	above.	Properties	3	and	4	follow

from	the	Cauchy-Schwarz	inequality.

Since	the	Gaussian	pulse	g(	t)	achieves	the	minimum	time-bandwidth	product,	it	makes	for	a

theoretically	good	prototype	waveform.	In	other	words,	we	might	consider	constructing	a	basis

from	time	shifted,	frequency	shifted,	time	scaled,	or	frequency	scaled	versions	of	g(	t)	to	give	a

range	of	spectral/temporal	centers	and	spectral/temporal	resolutions.	Since	the	Gaussian	pulse	has

http://cnx.org/content/m10757/latest/


doubly-infinite	time-support,	though,	other	windows	are	used	in	practice.	Basis	construction	from

a	prototype	waveform	is	the	main	concept	behind	Short-Time	Fourier	Analysis	and	the

continuous	Wavelet	transform	discussed	later.

Short-time	Fourier	Transform*

We	saw	earlier	that	Fourier	analysis	is	not	well	suited	to	describing	local	changes	in	"frequency

content"	because	the	frequency	components	defined	by	the	Fourier	transform	have	infinite	(	i.e.	,

global)	time	support.	For	example,	if	we	have	a	signal	with	periodic	components	plus	a	glitch	at

time	t	0	,	we	might	want	accurate	knowledge	of	both	the	periodic	component	frequencies	and	the

glitch	time	(Figure	4.4).

Figure	4.4.

The	Short-Time	Fourier	Transform	(STFT)	provides	a	means	of	joint	time-frequency	analysis.

The	STFT	pair	can	be	written



assuming	real-valued	w(	t)	for	which	∫(|	w(	t)|)2d	t=1	.	The	STFT	can	be	interpreted	as	a	"sliding
window	CTFT":	to	calculate	X	STFT(	Ω,	τ)	,	slide	the	center	of	window	w(	t)	to	time	τ,	window	the
input	signal,	and	compute	the	CTFT	of	the	result	(Figure	4.5).

Figure	4.5.	"Sliding	Window	CTFT"

The	idea	is	to	isolate	the	signal	in	the	vicinity	of	time	τ,	then	perform	a	CTFT	analysis	in	order	to

estimate	the	"local"	frequency	content	at	time	τ.

Essentially,	the	STFT	uses	the	basis	elements	b	Ω	,	τ	(	t)=	w(	t−	τ)	ⅇⅈΩt	over	the	range	t∈(–∞,	∞)	and
Ω∈(–∞,	∞)	.	This	can	be	understood	as	time	and	frequency	shifts	of	the	window	function	w(	t)	.

The	STFT	basis	is	often	illustrated	by	a	tiling	of	the	time-frequency	plane,	where	each	tile

represents	a	particular	basis	element	(Figure	4.6):

Figure	4.6.

The	height	and	width	of	a	tile	represent	the	spectral	and	temporal	widths	of	the	basis	element,

respectively,	and	the	position	of	a	tile	represents	the	spectral	and	temporal	centers	of	the	basis

element.	Note	that,	while	the	tiling	diagram	suggests	that	the	STFT	uses	a	discrete	set	of

time/frequency	shifts,	the	STFT	basis	is	really	constructed	from	a	continuum	of	time/frequency

shifts.

Note	that	we	can	decrease	spectral	width	ΔΩ	at	the	cost	of	increased	temporal	width	Δt	by

stretching	basis	waveforms	in	time,	although	the	time-bandwidth	product	ΔtΔΩ	(	i.e.	,	the	area	of

each	tile)	will	remain	constant	(Figure	4.7).



Figure	4.7.

Our	observations	can	be	summarized	as	follows:

the	time	resolutions	and	frequency	resolutions	of	every	STFT	basis	element	will	equal	those	of

the	window	w(	t)	.	(All	STFT	tiles	have	the	same	shape.)

the	use	of	a	wide	window	will	give	good	frequency	resolution	but	poor	time	resolution,	while

the	use	of	a	narrow	window	will	give	good	time	resolution	but	poor	frequency	resolution.

(When	tiles	are	stretched	in	one	direction	they	shrink	in	the	other.)

The	combined	time-frequency	resolution	of	the	basis,	proportional	to

,	is	determined	not

by	window	width	but	by	window	shape.	Of	all	shapes,	the	Gaussian	[5]

gives	the

highest	time-frequency	resolution,	although	its	infinite	time-support	makes	it	impossible	to

implement.	(The	Gaussian	window	results	in	tiles	with	minimum	area.)

Finally,	it	is	interesting	to	note	that	the	STFT	implies	a	particular	definition	of	instantaneous

frequency.	Consider	the	linear	chirp	x(	t)=sin(	Ω	0	t	2)	.	From	casual	observation,	we	might	expect	an
instantaneous	frequency	of	Ω	0	τ	at	time	τ	since	sin(	Ω	0	t	2)=sin(	Ω	0	τt)	,	t=	τ	The	STFT,	however,	will
indicate	a	time-	τ	instantaneous	frequency	of

Caution

The	phase-derivative	interpretation	of	instantaneous	frequency	only	makes	sense	for	signals

containing	exactly	one	sinusoid,	though!	In	summary,	always	remember	that	the	traditional

notion	of	"frequency"	applies	only	to	the	CTFT;	we	must	be	very	careful	when	bending	the

notion	to	include,	e.g.	,	"instantaneous	frequency",	as	the	results	may	be	unexpected!

Continuous	Wavelet	Transform*

The	STFT	provided	a	means	of	(joint)	time-frequency	analysis	with	the	property	that



spectral/temporal	widths	(or	resolutions)	were	the	same	for	all	basis	elements.	Let's	now	take	a

closer	look	at	the	implications	of	uniform	resolution.

Consider	two	signals	composed	of	sinusoids	with	frequency	1	Hz	and	1.001	Hz,	respectively.	It

may	be	difficult	to	distinguish	between	these	two	signals	in	the	presence	of	background	noise

unless	many	cycles	are	observed,	implying	the	need	for	a	many-second	observation.	Now	consider

two	signals	with	pure	frequencies	of	1000	Hz	and	1001	Hz-again,	a	0.1%	difference.	Here	it	should

be	possible	to	distinguish	the	two	signals	in	an	interval	of	much	less	than	one	second.	In	other

words,	good	frequency	resolution	requires	longer	observation	times	as	frequency	decreases.	Thus,

it	might	be	more	convenient	to	construct	a	basis	whose	elements	have	larger	temporal	width	at

low	frequencies.

The	previous	example	motivates	a	multi-resolution	time-frequency	tiling	of	the	form	(Figure	4.8):



Figure	4.8.

The	Continuous	Wavelet	Transform	(CWT)	accomplishes	the	above	multi-resolution	tiling	by

time-scaling	and	time-shifting	a	prototype	function	ψ(	t)	,	often	called	the	mother	wavelet.	The	a-

scaled	and	τ-shifted	basis	elements	is	given	by

where	a∧	τ∈ℝ

The	conditions	above	imply	that	ψ(	t)	is	bandpass	and	sufficiently	smooth.

Assuming	that	∥	ψ(	t)∥=1	,	the	definition	above	ensures	that	∥	ψ	a	,	τ	(	t)∥=1	for	all	a	and	τ.	The	CWT

is	then	defined	by	the	transform	pair

In

basis	terms,	the	CWT	says	that	a	waveform	can	be	decomposed	into	a	collection	of	shifted	and

stretched	versions	of	the	mother	wavelet	ψ(	t)	.	As	such,	it	is	usually	said	that	wavelets	perform	a

"time-scale"	analysis	rather	than	a	time-frequency	analysis.

The	Morlet	wavelet	is	a	classic	example	of	the	CWT.	It	employs	a	windowed	complex

exponential	as	the	mother	wavelet:

where	it	is	typical	to	select

.	(See	illustration.)	While	this	wavelet	does	not	exactly	satisfy	the	conditions



established	earlier,	since	Ψ(0)≈7×10-7≠0	,	it	can	be	corrected,	though	in	practice	the	correction	is

negligible	and	usually	ignored.

Figure	4.9.

While	the	CWT	discussed	above	is	an	interesting	theoretical	and	pedagogical	tool,	the	discrete

wavelet	transform	(DWT)	is	much	more	practical.	Before	shifting	our	focus	to	the	DWT,	we	take

a	step	back	and	review	some	of	the	basic	concepts	from	the	branch	of	mathematics	known	as

Hilbert	Space	theory	(Vector	Space,	Normed	Vector	Space,	Inner	Product	Space,	Hilbert

Space,	Projection	Theorem).	These	concepts	will	be	essential	in	our	development	of	the	DWT.

4.2.	Hilbert	Space	Theory

Hilbert	Space	Theory*

Hilbert	spaces	provide	the	mathematical	foundation	for	signal	processing	theory.	In	this	section

we	attempt	to	clearly	define	some	key	Hilbert	space	concepts	like	vectors,	norms,	inner

products,	subspaces,	orthogonality,	orthonormal	bases,	and	projections.	The	intent	is	not	to	bury
you	in	mathematics,	but	to	familiarize	you	with	the	terminology,	provide	intuition,	and	leave

you	with	a	"lookup	table"	for	future	reference.

Vector	Space*

A	vector	space	consists	of	the	following	four	elements:

1.	A	set	of	vectors	V,

2.	A	field	of	scalars	(where,	for	our	purposes,	is	either	ℝ	or	ℂ),

3.	The	operations	of	vector	addition	"+"	(	i.e.	,	+	:	V×	V→	V	)

4.	The	operation	of	scalar	multiplication	"⋅"(	i.e.	,	⋅	:	×	V→	V	)

for	which	the	following	properties	hold.	(Assume	x∧y∧z∈	V	and	α∧	β∈	.)

Table	4.1.

Properties

Examples

commutativity



x+y=y+x

associativity

(x+y)+z=x+(y+z)

(	αβ)x=	α(	βx)

α⋅(x+y)=(	α	⋅	x)+(	α	⋅	y)

distributivity

(	α+	β)x=	αx+	βx

additive	identity

∃0,0∈	V:(x+0=x)	,	x∈	V

additive	inverse

∃–x,–x∈	V:(x+(–x)=0)	,	x∈	V

multiplicative	identity

(1	⋅	x)=x	,	x∈	V

Important	examples	of	vector	spaces	include

Table	4.2.

Properties

Examples

real	N-vectors

V=ℝ	N	,	=ℝ

complex	N-vectors



V=ℂ	N	,	=ℂ

,

sequences	in	"	lp	"

=ℂ

functions	in	"	ℒp	"

,	=ℂ

where	we	have	assumed	the	usual	definitions	of	addition	and	multiplication.	From	now	on,	we	will

denote	the	arbitrary	vector	space	(	V,	,	+,	⋅)	by	the	shorthand	V	and	assume	the	usual	selection	of

(	,	+,	⋅).	We	will	also	suppress	the	"⋅"	in	scalar	multiplication,	so	that	(	α	⋅	x)	becomes	αx	.

A	subspace	of	V	is	a	subset	M⊂	V	for	which

1.	x+y∈	M	,	x∈	M∧y∈	M

2.	αx∈	M	,	x∈	M∧	α∈

Note	that	every	subspace	must	contain	0,	and	that	V	is	a	subspace	of	itself.

The	span	of	set	S⊂	V	is	the	subspace	of	V	containing	all	linear	combinations	of	vectors	in	S.

When



,

A	subset	of	linearly-independent	vectors

is	called	a	basis	for	V	when	its	span

equals	V.	In	such	a	case,	we	say	that	V	has	dimension	N.	We	say	that	V	is	infinite-dimensional

[6]	if	it	contains	an	infinite	number	of	linearly	independent	vectors.

V	is	a	direct	sum	of	two	subspaces	M	and	N,	written	V=(	M⊕	N)	,	iff	every	x∈	V	has	a	unique
representation	x=m+n	for	m∈	M	and	n∈	N	.

Note	that	this	requires	M⋂	N={0}

Normed	Vector	Space*

Now	we	equip	a	vector	space	V	with	a	notion	of	"size".

A	norm	is	a	function	(	(∥⋅∥	:	V→ℝ)	)	such	that	the	following	properties	hold	(

,	x∈	V∧y∈	V	and	,	α∈	):

1.	∥x∥≥0	with	equality	iff	x=0

2.	∥	αx∥=|	α|⋅∥x∥

3.	∥x+y∥≤∥x∥+∥y∥	,	(the	triangle	inequality).

In	simple	terms,	the	norm	measures	the	size	of	a	vector.	Adding	the	norm	operation	to	a	vector

space	yields	a	normed	vector	space.	Important	example	include:

1.	V=ℝ	N	,

2.	V=ℂ	N	,

3.	V=	lp	,

4.	V=	ℒp	,



Inner	Product	Space*

Next	we	equip	a	normed	vector	space	V	with	a	notion	of	"direction".

An	inner	product	is	a	function	(	(<	·,	·>	:	V×	V)→ℂ	)	such	that	the	following	properties	hold	(

,	x∈	V∧y∈	V∧z∈	V	and	,	α∈	):

1.

2.	<	x,	αy>=	α<	x,	y>	...implying	that

3.	<	x,	y+z>=<	x,	y>+<	x,	z>

4.	<	x,	x>≥0	with	equality	iff	x=0

In	simple	terms,	the	inner	product	measures	the	relative	alignment	between	two	vectors.

Adding	an	inner	product	operation	to	a	vector	space	yields	an	inner	product	space.	Important

examples	include:

1.	V=ℝ	N	,	(<	x,	y>	≔	xTy)

2.	V=ℂ	N	,	(<	x,	y>	≔	xHy)

3.	V=	l	2	,

4.	V=	ℒ	2	,

The	inner	products	above	are	the	"usual"	choices	for	those	spaces.

The	inner	product	naturally	defines	a	norm:

though	not	every	norm	can	be

defined	from	an	inner	product.	[7]	Thus,	an	inner	product	space	can	be	considered	as	a	normed

vector	space	with	additional	structure.	Assume,	from	now	on,	that	we	adopt	the	inner-product

norm	when	given	a	choice.

The	Cauchy-Schwarz	inequality	says

|<	x,	y>|≤∥x∥∥y∥	with	equality	iff	∃,	α∈	:(x=	αy)	.



When	<	x,	y>∈ℝ	,	the	inner	product	can	be	used	to	define	an	"angle"	between	vectors:

Vectors	x	and	y	are	said	to	be	orthogonal,	denoted	as	(x	⊥	y)	,	when	<	x,	y>=0	.	The	Pythagorean
theorem	says:	(∥x+y∥)2=(∥x∥)2+(∥y∥)2	,	(x	⊥	y)	Vectors	x	and	y	are	said	to

be	orthonormal	when	(x	⊥	y)	and	∥x∥=∥y∥=1	.

(x	⊥	S)	means	(x	⊥	y)	for	all	y∈	S	.	S	is	an	orthogonal	set	if	(x	⊥	y)	for	all	x∧y∈	S	s.t.	x≠y	.	An
orthogonal	set	S	is	an	orthonormal	set	if	∥x∥=1	for	all	x∈	S	.	Some	examples	of	orthonormal

sets	are

1.	ℝ3	:

2.	ℂ	N	:	Subsets	of	columns	from	unitary	matrices

3.	l	2	:	Subsets	of	shifted	Kronecker	delta	functions	S⊂{{	δ[	n−	k]}|	k∈ℤ}

4.	ℒ	2	:

for	unit	pulse	f(	t)=	u(	t)−	u(	t−	T)	,	unit	step	u(	t)

where	in	each	case	we	assume	the	usual	inner	product.

Hilbert	Spaces*

Now	we	consider	inner	product	spaces	with	nice	convergence	properties	that	allow	us	to	define

countably-infinite	orthonormal	bases.

A	Hilbert	space	is	a	complete	inner	product	space.	A	complete	[8]	space	is	one	where	all	Cauchy
sequences	converge	to	some	vector	within	the	space.	For	sequence	{	xn}	to	be	Cauchy,

the	distance	between	its	elements	must	eventually	become	arbitrarily	small:

For	a	sequence	{	xn}	to	be	convergent	to	x,	the	distance



between	its	elements	and	x	must	eventually	become	arbitrarily	small:

Examples	are	listed	below	(assuming	the	usual	inner	products):

1.	V=ℝ	N

2.	V=ℂ	N

3.	V=	l	2	(	i.e.	,	square	summable	sequences)

4.	V=	ℒ	2	(	i.e.	,	square	integrable	functions)

We	will	always	deal	with	separable	Hilbert	spaces,	which	are	those	that	have	a	countable	[9]

orthonormal	(ON)	basis.	A	countable	orthonormal	basis	for	V	is	a	countable	orthonormal	set

such	that	every	vector	in	V	can	be	represented	as	a	linear	combination	of	elements	in	S:

Due	to	the	orthonormality	of	S,	the	basis	coefficients	are	given	by



We	can	see	this	via:

where

(where	the	second	equality	invokes	the	continuity	of	the	inner	product).	In	finite	n-dimensional

spaces	(	e.g.	,	ℝ	n	or	ℂ	n	),	any	n-element	ON	set	constitutes	an	ON	basis.	In	infinite-dimensional

spaces,	we	have	the	following	equivalences:

1.

is	an	ON	basis

2.	If

for	all	i,	then	y=0

3.

(Parseval's	theorem)

4.	Every	y∈	V	is	a	limit	of	a	sequence	of	vectors	in

Examples	of	countable	ON	bases	for	various	Hilbert	spaces	include:

1.	ℝ	n	:

for

with	"1"	in	the	i	th	position

2.	ℂ	n	:	same	as	ℝ	n

3.	l	2	:

,	for	({	δi[	n]}	≔	{	δ[	n−	i]})	(all	shifts	of	the	Kronecker	sequence)

4.	ℒ	2	:	to	be	constructed	using	wavelets	...

Say	S	is	a	subspace	of	Hilbert	space	V.	The	orthogonal	complement	of	S	in	V,	denoted	S⊥	,	is



the	subspace	defined	by	the	set	{x∈	V|(x	⊥	S)}	.	When	S	is	closed,	we	can	write	V=(	S⊕	S⊥)	The
orthogonal	projection	of	y	onto	S,	where	S	is	a	closed	subspace	of	V,	is

s.t.

is	an	ON	basis	for	S.	Orthogonal	projection	yields	the	best	approximation	of	y	in	S:

The	approximation	error

obeys	the	orthogonality	principle:

(e	⊥	S)	We	illustrate	this	concept	using	V=ℝ3	(Figure	4.10)	but	stress	that	the	same	geometrical
interpretation	applies	to	any	Hilbert	space.

Figure	4.10.

A	proof	of	the	orthogonality	principle	is:

()

4.3.	Discrete	Wavelet	Transform

Discrete	Wavelet	Transform:	Main	Concepts*

Main	Concepts

The	discrete	wavelet	transform	(DWT)	is	a	representation	of	a	signal	x(	t)∈	ℒ	2	using	an



orthonormal	basis	consisting	of	a	countably-infinite	set	of	wavelets.	Denoting	the	wavelet	basis	as

,	the	DWT	transform	pair	is

()

()

where	{	d	k	,	n	}	are	the	wavelet	coefficients.	Note	the	relationship	to	Fourier	series	and	to	the

sampling	theorem:	in	both	cases	we	can	perfectly	describe	a	continuous-time	signal	x(	t)	using	a

countably-infinite	(	i.e.	,	discrete)	set	of	coefficients.	Specifically,	Fourier	series	enabled	us	to

describe	periodic	signals	using	Fourier	coefficients	{	X[	k]|	k∈ℤ}	,	while	the	sampling	theorem

enabled	us	to	describe	bandlimited	signals	using	signal	samples	{	x[	n]|	n∈ℤ}	.	In	both	cases,

signals	within	a	limited	class	are	represented	using	a	coefficient	set	with	a	single	countable	index.

The	DWT	can	describe	any	signal	in	ℒ	2	using	a	coefficient	set	parameterized	by	two	countable

indices:

.

Wavelets	are	orthonormal	functions	in	ℒ	2	obtained	by	shifting	and	stretching	a	mother	wavelet,

ψ(	t)∈	ℒ	2	.	For	example,

()

defines	a	family	of	wavelets

related	by	power-of-two	stretches.	As	k	increases,

the	wavelet	stretches	by	a	factor	of	two;	as	n	increases,	the	wavelet	shifts	right.

When	∥	ψ(	t)∥=1	,	the	normalization	ensures	that	∥	ψ	k	,	n	(	t)∥=1	for	all	k∈ℤ	,	n∈ℤ	.

Power-of-two	stretching	is	a	convenient,	though	somewhat	arbitrary,	choice.	In	our	treatment	of



the	discrete	wavelet	transform,	however,	we	will	focus	on	this	choice.	Even	with	power-of	two

stretches,	there	are	various	possibilities	for	ψ(	t)	,	each	giving	a	different	flavor	of	DWT.

Wavelets	are	constructed	so	that

(	i.e.	,	the	set	of	all	shifted	wavelets	at	fixed	scale	k),

describes	a	particular	level	of	'detail'	in	the	signal.	As	k	becomes	smaller	(	i.e.	,	closer	to	–∞	),	the

wavelets	become	more	"fine	grained"	and	the	level	of	detail	increases.	In	this	way,	the	DWT	can

give	a	multi-resolution	description	of	a	signal,	very	useful	in	analyzing	"real-world"	signals.

Essentially,	the	DWT	gives	us	a	discrete	multi-resolution	description	of	a	continuous-time

signal	in	ℒ	2	.

In	the	modules	that	follow,	these	DWT	concepts	will	be	developed	"from	scratch"	using	Hilbert

space	principles.	To	aid	the	development,	we	make	use	of	the	so-called	scaling	function

φ(	t)∈	ℒ	2	,	which	will	be	used	to	approximate	the	signal	up	to	a	particular	level	of	detail.	Like

with	wavelets,	a	family	of	scaling	functions	can	be	constructed	via	shifts	and	power-of-two

stretches

()

given	mother	scaling	function	φ(	t)	.	The	relationships	between	wavelets	and	scaling	functions	will

be	elaborated	upon	later	via	theory	and	example.

The	inner-product	expression	for	d	k	,	n	,	Equation	is	written	for	the	general	complex-valued	case.	In	our
treatment	of	the	discrete	wavelet	transform,	however,	we	will	assume	real-valued

signals	and	wavelets.	For	this	reason,	we	omit	the	complex	conjugations	in	the	remainder	of

our	DWT	discussions

The	Haar	System	as	an	Example	of	DWT*



The	Haar	basis	is	perhaps	the	simplest	example	of	a	DWT	basis,	and	we	will	frequently	refer	to	it

in	our	DWT	development.	Keep	in	mind,	however,	that	the	Haar	basis	is	only	an	example;	there

are	many	other	ways	of	constructing	a	DWT	decomposition.

For	the	Haar	case,	the	mother	scaling	function	is	defined	by	Equation	and	Figure	4.11.

()

Figure	4.11.

From	the	mother	scaling	function,	we	define	a	family	of	shifted	and	stretched	scaling	functions

{	φ	k	,	n	(	t)}	according	to	Equation	and	Figure	4.12

()

Figure	4.12.

which	are	illustrated	in	Figure	4.13	for	various	k	and	n.	Equation	makes	clear	the	principle	that
incrementing	n	by	one	shifts	the	pulse	one	place	to	the	right.	Observe	from	Figure	4.13	that	is
orthonormal	for	each	k	(	i.e.	,	along	each	row	of	figures).



Figure	4.13.

A	Hierarchy	of	Detail	in	the	Haar	System*

Given	a	mother	scaling	function	φ(	t)∈	ℒ	2	—	the	choice	of	which	will	be	discussed	later	—	let	us

construct	scaling	functions	at	"coarseness-level-k"	and	"shift-	n"	as	follows:

Let

us	then	use	Vk	to	denote	the	subspace	defined	by	linear	combinations	of	scaling	functions	at	the

k	th	level:

In	the	Haar	system,	for	example,	V	0	and	V	1	consist	of	signals	with

the	characteristics	of	x	0(	t)	and	x	1(	t)	illustrated	in	Figure	4.14.



Figure	4.14.

We	will	be	careful	to	choose	a	scaling	function	φ(	t)	which	ensures	that	the	following	nesting

property	is	satisfied:	…⊂	V	2⊂	V	1⊂	V	0⊂	V-1⊂	V-2⊂	…	coarse	detailed	In	other	words,	any	signal	in
Vk	can	be	constructed	as	a	linear	combination	of	more	detailed	signals	in	V	k	−	1	.	(The	Haar

system	gives	proof	that	at	least	one	such	φ(	t)	exists.)

The	nesting	property	can	be	depicted	using	the	set-theoretic	diagram,	Figure	4.15,	where	V	−	1	is
represented	by	the	contents	of	the	largest	egg	(which	includes	the	smaller	two	eggs),	V	0	is

represented	by	the	contents	of	the	medium-sized	egg	(which	includes	the	smallest	egg),	and	V	1	is

represented	by	the	contents	of	the	smallest	egg.

Figure	4.15.

Going	further,	we	will	assume	that	φ(	t)	is	designed	to	yield	the	following	three	important

properties:

1.

constitutes	an	orthonormal	basis	for	Vk	,

2.	V∞={0}	(contains	no	signals).	[10]



3.	V	−	∞	=	ℒ	2	(contains	all	signals).

Because

is	an	orthonormal	basis,	the	best	(in	ℒ	2	norm)	approximation	of	x(	t)∈	ℒ	2	at

coarseness-level-	k	is	given	by	the	orthogonal	projection,	Figure	4.16

()

()

c	k	,	n	=<	φ	k	,	n	(	t),	x(	t)>

Figure	4.16.

We	will	soon	derive	conditions	on	the	scaling	function	φ(	t)	which	ensure	that	the	properties	above

are	satisfied.



Haar	Approximation	at	the	kth	Coarseness	Level*

It	is	instructive	to	consider	the	approximation	of	signal	x(	t)∈	ℒ	2	at	coarseness-level-	k	of	the	Haar
system.	For	the	Haar	case,	projection	of	x(	t)∈	ℒ	2	onto	Vk	is	accomplished	using	the	basis

coefficients

()

giving	the	approximation

()

where

This	corresponds	to	taking	the

average	value	of	the	signal	in	each	interval	of	width	2	k	and	approximating	the	function	by	a

constant	over	that	interval	(see	Figure	4.17).

Figure	4.17.

The	Scaling	Equation*

Consider	the	level-1	subspace	and	its	orthonormal	basis:

()

()



Since	V	1⊂	V	0	(	i.e.	,	V	0	is	more	detailed	than	V	1	)	and	since	φ	1	,	0	(	t)∈	V	0	,	there	must	exist
coefficients	{	h[	n]|	n∈ℤ}	such	that

()

()

(4.1)

Scaling	Equation

To	be	a	valid	scaling	function,	φ(	t)	must	obey	the	scaling	equation	for	some	coefficient	set

{	h[	n]}	.

The	Wavelet	Scaling	Equation*

The	difference	in	detail	between	Vk	and	V	k	−	1	will	be	described	using	Wk	,	the	orthogonal	complement
of	Vk	in	V	k	−	1	:

()

V	k	−	1	=(	Vk⊕	Wk)

At	times	it	will	be	convenient	to	write	W

⊥

k=	Vk	.	This	concept	is	illustrated	in	the	set-theoretic

diagram,	Figure	4.18.

Figure	4.18.

Suppose	now	that,	for	each	k∈ℤ	,	we	construct	an	orthonormal	basis	for	Wk	and	denote	it	by

.	It	turns	out	that,	because	every	Vk	has	a	basis	constructed	from	shifts	and	stretches	of

a	mother	scaling	function	(	i.e.	,

,	every	Wk	has	a	basis	that	can	be	constructed

from	shifts	and	stretches	of	a	"mother	wavelet"	ψ(	t)∈	ℒ	2	:

The	Haar	system



will	soon	provide	us	with	a	concrete	example	.

Let's	focus,	for	the	moment,	on	the	specific	case	k=1	.	Since	W	1⊂	V	0	,	there	must	exist

{	g[	n]|	n∈ℤ}	such	that:

()

(4.2)

Wavelet	Scaling	Equation

To	be	a	valid	scaling-function/wavelet	pair,	φ(	t)	and	ψ(	t)	must	obey	the	wavelet	scaling	equation	for
some	coefficient	set	{	g[	n]}	.

Conditions	on	h[n]	and	g[n]*

Here	we	derive	sufficient	conditions	on	the	coefficients	used	in	the	scaling	equation	and	wavelet

scaling	equation	that	ensure,	for	every	k∈ℤ	,	that	the	sets

and



have	the

orthonormality	properties	described	in	The	Scaling	Equation	and	The	Wavelet	Scaling

Equation.

For

to	be	orthonormal	at	all	k,	we	certainly	need	orthonormality	when	k=1	.	This	is

equivalent	to

()

where	δ[	n−	ℓ+2	m]=<	φ(	t−	n),	φ(	t−	ℓ−2	m)>	()

There	is	an	interesting	frequency-domain	interpretation	of	the	previous	condition.	If	we	define

()

then	we	see	that	our	condition	is	equivalent	to	p[2	m]=	δ[	m]	.	In	the	z-domain,	this	yields	the	pair	of
conditions

(4.3)

Power-Symmetry	Property

P(	z)=	H(	z)	H(	z-1)

Putting	these	together,



()

2=	H(	z	1/2)	H(	z–1/2)+	H(–(	z	1/2))	H(–(	z–1/2))

⇔	2=	H(	z)	H(	z-1)+	H(–	z)	H(–(	z-1))	⇔	2=(|	H(	ⅇⅈω)|)2+(|	H(	ⅇⅈ(	π−	ω))|)2	where	the	last	property
invokes	the	fact	that	h[	n]∈ℝ	and	that	real-valued	impulse	responses	yield	conjugate-symmetric
DTFTs.

Thus	we	find	that	h[	n]	are	the	impulse	response	coefficients	of	a	power-symmetric	filter.	Recall

that	this	property	was	also	shared	by	the	analysis	filters	in	an	orthogonal	perfect-reconstruction

FIR	filterbank.

Given	orthonormality	at	level	k=0	,	we	have	now	derived	a	condition	on	h[	n]	which	is	necessary

and	sufficient	for	orthonormality	at	level	k=1	.	Yet	the	same	condition	is	necessary	and	sufficient

for	orthonormality	at	level	k=2	:

()

where	δ[	n−	ℓ+2	m]=<	φ	1	,	n	(	t),	φ	1	,	ℓ	+	2	m	(	t)>	.	Using	induction,	we	conclude	that	the	previous
condition	will	be	necessary	and	sufficient	for	orthonormality	of

for	all	k∈ℤ	.

To	find	conditions	on	{	g[	n]}	ensuring	that	the	set

is	orthonormal	at	every	k,	we	can

repeat	the	steps	above	but	with	g[	n]	replacing	h[	n]	,	ψ	k	,	n	(	t)	replacing	φ	k	,	n	(	t)	,	and	the	wavelet-
scaling	equation	replacing	the	scaling	equation.	This	yields

()

⇔	2=	G(	z)	G(	z-1)+	G(–	z)	G(–(	z-1))	Next	derive	a	condition	which	guarantees	that	(	Wk	⊥	Vk)	,	as
required	by	our	definition	W

⊥

k=	Vk	,	for	all	k∈ℤ	.	Note	that,	for	any	k∈ℤ	,	(	Wk	⊥	Vk)	is	guaranteed



by

which	is	equivalent	to

()

for	all	m	where	δ[	n−	ℓ+2	m]=<	φ	k	,	n	(	t),	φ	k	,	ℓ	+	2	m	(	t)>	.	In	other	words,	a	2-downsampled	version
of	g[	n]*	h[–	n]	must	consist	only	of	zeros.	This	necessary	and	sufficient	condition	can	be	restated	in	the
frequency	domain	as

()

⇔	0=	G(	z	1/2)	H(	z–1/2)+	G(–(	z	1/2))	H(–(	z–1/2))	⇔	0=	G(	z)	H(	z-1)+	G(–	z)	H(–(	z-1))	The	choice	()

G(	z)=±(	z–	PH((–	z)-1))

satisfies	our	condition,	since

G(	z)	H(	z-1)+	G(–	z)	H(–(	z-1))=(±	z–	PH((–	z)-1)	H(	z-1)	∓	z–	PH(	z-1)	H((–	z)-1))=0	In	the	time
domain,	the	condition	on	G(	z)	and	H(	z)	can	be	expressed

()

g[	n]=±(-1	nh[	P−	n])	.

Recall	that	this	property	was	satisfied	by	the	analysis	filters	in	an	orthogonal	perfect



reconstruction	FIR	filterbank.

Note	that	the	two	conditions	G(	z)=±(	z–	PH((–	z)-1))	2=	H(	z)	H(	z-1)+	H(–	z)	H(–(	z-1))	are	sufficient
to	ensure	that	both

and

are	orthonormal	for	all	k	and	that	(	Wk	⊥	Vk)	for	all

k,	since	they	satisfy	the	condition	2=	G(	z)	G(	z-1)+	G(–	z)	G(–(	z-1))	automatically.

Values	of	g[n]	and	h[n]	for	the	Haar	System*

The	coefficients	{	h[	n]}	were	originally	introduced	at	describe	φ	1	,	0	(	t)	in	terms	of	the	basis	for	V	0	:

From	the	previous	equation	we	find	that

()

where	δ[	n−	m]=<	φ	0	,	m	(	t),	φ	0	,	n	(	t)>	,	which	gives	a	way	to	calculate	the	coefficients	{	h[	m]}
when	we	know	φ	k	,	n	(	t)	.

In	the	Haar	case

()

since

in	the	interval	[0,	2)	and	zero	otherwise.	Then	choosing	P=1	in	g[	n]=-1	nh(	P−	n)	,



we	find	that

for	the	Haar	system.	From	the	wavelet	scaling	equation

we	can	see	that	the	Haar	mother	wavelet	and	scaling	function

look	like	in	Figure	4.19:

Figure	4.19.

It	is	now	easy	to	see,	in	the	Haar	case,	how	integer	shifts	of	the	mother	wavelet	describe	the

differences	between	signals	in	V	−	1	and	V	0	(Figure	4.20):

Figure	4.20.

We	expect	this	because	V	−	1	=(	V	0⊕	W	0)	.

Wavelets:	A	Countable	Orthonormal	Basis	for	the	Space	of

Square-Integrable	Functions*

Recall	that	Vk=(	W	k	+	1	⊕	V	k	+	1	)	and	that	V	k	+	1	=(	W	k	+	2	⊕	V	k	+	2	)	.	Putting	these	together	and
extending	the	idea	yields

()



If	we	take	the	limit	as	k→–∞	,	we	find	that

()

Moreover,

()

(	W	1	⊥	V	1)∧	W	k	≥	2	⊂	V	1⇒(	W	1	⊥	W	k	≥	2	)

()

(	W	2	⊥	V	2)∧	W	k	≥	3	⊂	V	2⇒(	W	2	⊥	W	k	≥	3	)

from	which	it	follows	that

()

(	Wk	⊥	W	j	≠	k	)

or,	in	other	words,	all	subspaces	Wk	are	orthogonal	to	one	another.	Since	the	functions

form	an	orthonormal	basis	for	Wk	,	the	results	above	imply	that

()

This	implies	that,	for	any	f(	t)∈	ℒ	2	,	we	can	write

()

()

dk[	m]=<	ψ	k	,	m	(	t),	f(	t)>

This	is	the	key	idea	behind	the	orthogonal	wavelet	system	that	we	have	been	developing!

Filterbanks	Interpretation	of	the	Discrete	Wavelet	Transform*

Assume	that	we	start	with	a	signal	x(	t)∈	ℒ	2	.	Denote	the	best	approximation	at	the	0th	level	of

coarseness	by	x	0(	t)	.	(Recall	that	x	0(	t)	is	the	orthogonal	projection	of	x(	t)	onto	V	0	.)	Our	goal,	for



the	moment,	is	to	decompose	x	0(	t)	into	scaling	coefficients	and	wavelet	coefficients	at	higher

levels.	Since	x	0(	t)∈	V	0	and	V	0=(	V	1⊕	W	1)	,	there	exist	coefficients	{	c	0[	n]}	,	{	c	1[	n]}	,	and

{	d	1[	n]}	such	that

()

Using	the	fact	that

is	an	orthonormal	basis	for	V	1	,	in	conjunction	with	the	scaling

equation,

()

where	δ[	t−	ℓ−2	n]=<	φ(	t−	m),	φ(	t−	ℓ−2	n)>	.	The	previous	expression	(Equation)	indicates	that

{	c	1[	n]}	results	from	convolving	{	c	0[	m]}	with	a	time-reversed	version	of	h[	m]	then	downsampling
by	factor	two	(Figure	4.21).



Figure	4.21.

Using	the	fact	that

is	an	orthonormal	basis	for	W	1	,	in	conjunction	with	the	wavelet

scaling	equation,

()

where	δ[	t−	ℓ−2	n]=<	φ(	t−	m),	φ(	t−	ℓ−2	n)>	.

The	previous	expression	(Equation)	indicates	that	{	d	1[	n]}	results	from	convolving	{	c	0[	m]}	with	a
time-reversed	version	of	g[	m]	then	downsampling	by	factor	two	(Figure	4.22).

Figure	4.22.

Putting	these	two	operations	together,	we	arrive	at	what	looks	like	the	analysis	portion	of	an	FIR

filterbank	(Figure	4.23):

Figure	4.23.

We	can	repeat	this	process	at	the	next	higher	level.	Since	V	1=(	W	2⊕	V	2)	,	there	exist	coefficients



{	c	2[	n]}	and	{	d	2[	n]}	such	that

()

Using	the	same	steps	as	before	we	find	that

()

()

which	gives	a	cascaded	analysis	filterbank	(Figure	4.24):

Figure	4.24.

If	we	use	V	0=(	W	1⊕	W	2⊕	W	3⊕⋯⊕	Wk⊕	Vk)	to	repeat	this	process	up	to	the	k	th	level,	we	get	the
iterated	analysis	filterbank	(Figure	4.25).



Figure	4.25.

As	we	might	expect,	signal	reconstruction	can	be	accomplished	using	cascaded	two-channel

synthesis	filterbanks.	Using	the	same	assumptions	as	before,	we	have:

()

where	h[	m−2	n]=<	φ	1	,	n	(	t),	φ	0	,	m	(	t)>	and	g[	m−2	n]=<	ψ	1	,	n	(	t),	φ	0	,	m	(	t)>	which	can	be
implemented	using	the	block	diagram	in	Figure	4.26.

Figure	4.26.

The	same	procedure	can	be	used	to	derive

()

from	which	we	get	the	diagram	in	Figure	4.27.

Figure	4.27.

To	reconstruct	from	the	k	th	level,	we	can	use	the	iterated	synthesis	filterbank	(Figure	4.28).

Figure	4.28.

The	table	makes	a	direct	comparison	between	wavelets	and	the	two-channel	orthogonal	PR-FIR

filterbanks.

Table	4.3.

2-Channel	Orthogonal	PR-FIR

Discrete	Wavelet	Transform

Filterbank

Analysis-LPF

H(	z-1)



H	0(	z)

Power

H(	z)	H(	z-1)+	H(–	z)	H(–(	z-1))=2

H

Symmetry

0(	z)	H	0(	z-1)+	H	0(–	z)	H	0(–(	z-1))=1

Analysis	HPF

G(	z-1)

H	1(	z)

Spectral

G(	z)=±(	z–	PH(–(	z-1)))	,	P	is	odd	H

Reverse

1(	z)=±(	z–((	N−1))	H	0(–(	z-1)))	,	N	is	even

Synthesis	LPF	H(	z)

G	0(	z)=2	z–((	N−1))	H	0(	z-1)

Synthesis	HPF	G(	z)

G	1(	z)=2	z–((	N−1))	H	1(	z-1)

From	the	table,	we	see	that	the	discrete	wavelet	transform	that	we	have	been	developing	is

identical	to	two-channel	orthogonal	PR-FIR	filterbanks	in	all	but	a	couple	details.

1.	Orthogonal	PR-FIR	filterbanks	employ	synthesis	filters	with	twice	the	gain	of	the	analysis

filters,	whereas	in	the	DWT	the	gains	are	equal.

2.	Orthogonal	PR-FIR	filterbanks	employ	causal	filters	of	length	N,	whereas	the	DWT	filters	are

not	constrained	to	be	causal.



For	convenience,	however,	the	wavelet	filters	H(	z)	and	G(	z)	are	usually	chosen	to	be	causal.	For

both	to	have	even	impulse	response	length	N,	we	require	that	P=	N−1	.

Initialization	of	the	Wavelet	Transform*

The	filterbanks	developed	in	the	module	on	the	filterbanks	interpretation	of	the	DWT	start	with	the
signal	representation

and	break	the	representation	down	into	wavelet	coefficients

and	scaling	coefficients	at	lower	resolutions	(	i.e.	,	higher	levels	k).	The	question	remains:	how	do

we	get	the	initial	coefficients	{	c	0[	n]}	?

From	their	definition,	we	see	that	the	scaling	coefficients	can	be	written	using	a	convolution:

()

which	suggests	that	the	proper	initialization	of	wavelet	transform	is	accomplished	by	passing	the

continuous-time	input	x(	t)	through	an	analog	filter	with	impulse	response	φ(–	t)	and	sampling	its

output	at	integer	times	(Figure	4.29).

Figure	4.29.

Practically	speaking,	however,	it	is	very	difficult	to	build	an	analog	filter	with	impulse	response

φ(–	t)	for	typical	choices	of	scaling	function.

The	most	often-used	approximation	is	to	set	c	0[	n]=	x[	n]	.	The	sampling	theorem	implies	that	this

would	be	exact	if

,	though	clearly	this	is	not	correct	for	general	φ(	t)	.	Still,	this

technique	is	somewhat	justified	if	we	adopt	the	view	that	the	principle	advantage	of	the	wavelet



transform	comes	from	the	multi-resolution	capabilities	implied	by	an	iterated	perfect-

reconstruction	filterbank	(with	good	filters).

Regularity	Conditions,	Compact	Support,	and	Daubechies'

Wavelets*

Here	we	give	a	quick	description	of	what	is	probably	the	most	popular	family	of	filter	coefficients

h[	n]	and	g[	n]	—	those	proposed	by	Daubechies.

Recall	the	iterated	synthesis	filterbank.	Applying	the	Noble	identities,	we	can	move	the	up-

samplers	before	the	filters,	as	illustrated	in	Figure	4.30.

Figure	4.30.

The	properties	of	the	i-stage	cascaded	lowpass	filter



()

in	the	limit	i→∞	give	an	important	characterization	of	the	wavelet	system.	But	how	do	we	know

that

converges	to	a	response	in	ℒ	2	?	In	fact,	there	are	some	rather	strict	conditions	on

H(	ⅇⅈω)	that	must	be	satisfied	for	this	convergence	to	occur.	Without	such	convergence,	we	might

have	a	finite-stage	perfect	reconstruction	filterbank,	but	we	will	not	have	a	countable	wavelet

basis	for	ℒ	2	.	Below	we	present	some	"regularity	conditions"	on	H(	ⅇⅈω)	that	ensure	convergence	of
the	iterated	synthesis	lowpass	filter.

The	convergence	of	the	lowpass	filter	implies	convergence	of	all	other	filters	in	the	bank.

Let	us	denote	the	impulse	response	of	H	(	i	)	(	z)	by	h	(	i	)	[	n]	.	Writing

H	(	i	)	(	z)=	H(	z	2	i−1)	H	(	i	−	1	)	(	z)	in	the	time	domain,	we	have	Now	define

the	function

where	ℐ	[	a	,	b	)	(	t)	denotes	the	indicator	function	over

the	interval	[	a,	b)	:

The	definition	of	φ	(	i	)	(	t)	implies

()

()



and	plugging	the	two	previous	expressions	into	the	equation	for	h	(	i	)	[	n]	yields

()

Thus,	if	φ	(	i	)	(	t)	converges	pointwise	to	a	continuous	function,	then	it	must	satisfy	the	scaling

equation,	so	that

.	Daubechies	[link]	showed	that,	for	pointwise	convergence	of

φ	(	i	)	(	t)	to	a	continuous	function	in	ℒ	2	,	it	is	sufficient	that	H(	ⅇⅈω)	can	be	factored	as	()

for	R(	ⅇⅈω)	such	that

()

Here	P	denotes	the	number	of	zeros	that	H(	ⅇⅈω)	has	at	ω=	π	.	Such	conditions	are	called	regularity
conditions	because	they	ensure	the	regularity,	or	smoothness	of	φ(	t)	.	In	fact,	if	we	make	the

previous	condition	stronger:

()

then

for	φ(	t)	that	is	ℓ-times	continuously	differentiable.

There	is	an	interesting	and	important	by-product	of	the	preceding	analysis.	If	h[	n]	is	a	causal

length-	N	filter,	it	can	be	shown	that	h	(	i	)	[	n]	is	causal	with	length	Ni=(2	i−1)(	N−1)+1	.	By
construction,	then,	φ	(	i	)	[	t]	will	be	zero	outside	the	interval

.	Assuming	that	the

regularity	conditions	are	satisfied	so	that

,	it	follows	that	φ(	t)	must	be	zero	outside

the	interval	[0,	N−1]	.	In	this	case	we	say	that	φ(	t)	has	compact	support.	Finally,	the	wavelet

scaling	equation	implies	that,	when	φ(	t)	is	compactly	supported	on	[0,	N−1]	and	g[	n]	is	length	N,	ψ(	t)
will	also	be	compactly	supported	on	the	interval	[0,	N−1]	.

Daubechies	constructed	a	family	of	H(	z)	with	impulse	response	lengths	N∈{4,	6,	8,	10,	…}	which

satisfy	the	regularity	conditions.	Moreover,	her	filters	have	the	maximum	possible	number	of

zeros	at	ω=	π	,	and	thus	are	maximally	regular	(i.e.,	they	yield	the	smoothest	possible	φ(	t)	for	a	given



support	interval).	It	turns	out	that	these	filters	are	the	maximally	flat	filters	derived	by

Herrmann	[link]	long	before	filterbanks	and	wavelets	were	in	vogue.	In	Figure	4.31	and

Figure	4.32	we	show	φ(	t)	,	Φ(	Ω)	,	ψ(	t)	,	and	Ψ(	Ω)	for	various	members	of	the	Daubechies'	wavelet
system.

See	Vetterli	and	Kovacivić	[link]	for	a	more	complete	discussion	of	these	matters.



(a)

(b)

Figure	4.31.

(a)

(b)

Figure	4.32.
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Computing	the	Scaling	Function:	The	Cascade	Algorithm*

Given	coefficients	{	h[	n]}	that	satisfy	the	regularity	conditions,	we	can	iteratively	calculate

samples	of	φ(	t)	on	a	fine	grid	of	points	{	t}	using	the	cascade	algorithm.	Once	we	have	obtained

φ(	t)	,	the	wavelet	scaling	equation	can	be	used	to	construct	ψ(	t)	.

In	this	discussion	we	assume	that	H(	z)	is	causal	with	impulse	response	length	N.	Recall,	from	our

discussion	of	the	regularity	conditions,	that	this	implies	φ(	t)	will	have	compact	support	on	the
interval	[0,	N−1]	.	The	cascade	algorithm	is	described	below.

1.	Consider	the	scaling	function	at	integer	times	t=	m∈{0,	…,	N−1}	:

Knowing	that	φ(	t)=0	for	t∉[0,	N−1]	,	the	previous	equation	can	be	written	using	an	N	x	N

matrix.	In	the	case	where	N=4	,	we	have

()

The	matrix	H	is	structured	as	a	row-decimated	convolution	matrix.

From	the	matrix	equation	above	(Equation),	we	see	that	(	φ(0),	φ(1),	φ(2),	φ(3))	T	must	be	(some	scaled
version	of)	the	eigenvector	of	H	corresponding	to	eigenvalue

.	In	general,

the	nonzero	values	of	{	φ(	n)|	n∈ℤ}	,	i.e.	,	(	φ(0),	φ(1),	…,	φ(	N−1))	T	,	can	be	calculated	by
appropriately	scaling	the	eigenvector	of	the	N	x	N	row-decimated	convolution	matrix	H

corresponding	to	the	eigenvalue

.	It	can	be	shown	that	this	eigenvector	must	be	scaled	so

that

.

2.	Given	{	φ(	n)|	n∈ℤ}	,	we	can	use	the	scaling	equation	to	determine

:



2.	Given	{	φ(	n)|	n∈ℤ}	,	we	can	use	the	scaling	equation	to	determine

:

()

This	produces	the	2	N−1	non-zero	samples	{	φ(0),	φ(1/2),	φ(1),	φ(3/2),	…,	φ(	N−1)}	.

3.	Given

,	the	scaling	equation	can	be	used	to	find



:

()

where	h	↑	2	[	p]	denotes	the	impulse	response	of	H(	z	2)	,	i.e.	,	a	2-upsampled	version	of	h[	n]	,	and
where

.	Note	that

is	the	result	of	convolving	h	↑	2	[	n]	with

.

4.	Given

,	another	convolution	yields

:

()

where	h	↑	4	[	n]	is	a	4-upsampled	version	of	h[	n]	and	where

.

5.	At	the	ℓ	th	stage,

is	calculated	by	convolving	the	result	of	the	ℓ	−	1	th	stage	with	a	2	ℓ−1	-

upsampled	version	of	h[	n]	:

()

For	ℓ≈10	,	this	gives	a	very	good	approximation	of	φ(	t)	.	At	this	point,	you	could	verify	the	key

properties	of	φ(	t)	,	such	as	orthonormality	and	the	satisfaction	of	the	scaling	equation.

In	Figure	4.33	we	show	steps	1	through	5	of	the	cascade	algorithm,	as	well	as	step	10,	using

Daubechies'	db2	coefficients	(for	which	N=4	).



Figure	4.33.

Finite-Length	Sequences	and	the	DWT	Matrix*

The	wavelet	transform,	viewed	from	a	filterbank	perspective,	consists	of	iterated	2-channel

analysis	stages	like	the	one	in	Figure	4.34.

Figure	4.34.

First	consider	a	very	long	(i.e.,	practically	infinite-length)	sequence

.	For	every	pair	of

input	samples	{	ck[2	n],	ck[2	n−1]}	that	enter	the	k	th	filterbank	stage,	exactly	one	pair	of	output
samples	{	c	k	+	1	[	n],	d	k	+	1	[	n]}	are	generated.	In	other	words,	the	number	of	output	equals	the
number	of	input	during	a	fixed	time	interval.	This	property	is	convenient	from	a	real-time

processing	perspective.



For	a	short	sequence

,	however,	linear	convolution	requires	that	we	make	an

assumption	about	the	tails	of	our	finite-length	sequence.	One	assumption	could	be

()

ck[	m]=0	,	m∈{0,	…,	M−1}

In	this	case,	the	linear	convolution	implies	that	M	nonzero	inputs	yield

outputs	from	each

branch,	for	a	total	of

outputs.	Here	we	have	assumed	that	both	H(	z-1)	and



G(	z-1)	have	impulse	response	lengths	of	N>2	,	and	that	M	and	N	are	both	even.	The	fact	that	each
filterbank	stage	produces	more	outputs	than	inputs	is	very	disadvantageous	in	many	applications.

A	more	convenient	assumption	regarding	the	tails	of

is	that	the	data	outside

of	the	time	window	{0,	…,	M−1}	is	a	cyclic	extension	of	data	inside	the	time	window.	In	other

words,	given	a	length-	M	sequence,	the	points	outside	the	sequence	are	related	to	points	inside	the

sequences	via

()

ck[	m]=	ck[	m+	M]

Recall	that	a	linear	convolution	with	an	M-cyclic	input	is	equivalent	to	a	circular	convolution	with

one	M-sample	period	of	the	input	sequences.	Furthermore,	the	output	of	this	circular	convolution

is	itself	M-cyclic,	implying	our	2-downsampled	branch	outputs	are	cyclic	with	period	.	Thus,

given	an	M-length	input	sequence,	the	total	filterbank	output	consists	of	exactly	M	values.

It	is	instructive	to	write	the	circular-convolution	analysis	fiterbank	operation	in	matrix	form.	In

Equation	we	give	an	example	for	filter	length	N=4	,	sequence	length	N=8	,	and	causal	synthesis	filters
H(	z)	and	G(	z)	.

()

where



The	matrices	HM	and	GM	have

interesting	properties.	For	example,	the	conditions

g[	n]=-1	nh[	N−1−	n]	imply

that

where	IM	denotes	the	M	x	M	identity	matrix.	Thus,	it	makes	sense	to

define	the	M	x	M	DWT	matrix	as

()

whose	transpose	constitutes	the	M	x	M	inverse	DWT	matrix:

-1

T

()

TM	=	TM



Since	the	synthesis	filterbank	(Figure	4.35)

Figure	4.35.

gives	perfect	reconstruction,	and	since	the	cascade	of	matrix	operations	T	T

M	TM	also	corresponds

to	perfect	reconstruction,	we	expect	that	the	matrix	operation	T	T

M	describes	the	action	of	the

synthesis	filterbank.	This	is	readily	confirmed	by	writing	the	upsampled	circular	convolutions	in

matrix	form:

()

where

So	far	we	have	concentrated	on	one	stage	in	the

wavelet	decomposition;	a	two-stage	decomposition	is	illustrated	in	Figure	4.36.

Figure	4.36.

The	two-stage	analysis	operation	(assuming	circular	convolution)	can	be	expressed	in	matrix	form

as

()



Similarly,	a	three-stage	analysis	could	be	implemented	via

()

It	should	now	be	evident	how	to	extend	this	procedure	to	>3	stages.	As	noted	earlier,	the

corresponding	synthesis	operations	are	accomplished	by	transposing	the	matrix	products	used	in

the	analysis.

DWT	Implementation	using	FFTs*

Finally,	we	say	a	few	words	about	DWT	implementation.	Here	we	focus	on	a	single	DWT	stage

and	assume	circular	convolution,	yielding	an	M	x	M	DWT	matrix	TM	.	In	the	general	case,	M	x	M

matrix	multiplication	requires	M	2	multiplications.	The	DWT	matrices,	however,	have	a	circular-

convolution	structure	which	allows	us	to	implement	them	using	significantly	less	multiplies.

Below	we	present	some	simple	and	reasonably	efficient	approaches	for	the	implementation	of

T

T

M	and	TM	.

We	treat	the	inverse	DWT	first.	Recall	that	in	the	lowpass	synthesis	branch,	we	upsample	the

input	before	circularly	convolving	with	H(	z)	.	Denoting	the	upsampled	coefficient	sequence	by

a[	n]	,	fast	circular	convolution	a[	n]*	h[	n]	can	be	described	as	follows	(using	Matlab	notation)	ifft(
fft(a).*fft(h,length(a))	)

where	we	have	assumed	that	length(a)	≥	length(h).	[11]	The	highpass	branch	is	handled

similarly	using	G(	z)	,	after	which	the	two	branch	outputs	are	summed.

Next	we	treat	the	forward	DWT.	Recall	that	in	the	lowpass	analysis	branch,	we	circularly

convolve	the	input	with	H(	z-1)	and	then	downsample	the	result.	The	fast	circular	convolution

a[	n]*	h[–	n]	can	be	implemented	using

wshift('1',	ifft(fft(a).*fft(flipud(h),length(a))),	length(h)-1	)

where	wshift	accomplishes	a	circular	shift	of	the	ifft	output	that	makes	up	for	the	unwanted



delay	of	length(h)-1	samples	imposed	by	the	flipud	operation.	The	highpass	branch	is

handled	similarly	but	with	filter	G(	z-1)	.	Finally,	each	branch	is	downsampled	by	factor	two.

We	note	that	the	proposed	approach	is	not	totally	efficient	because	downsampling	is	performed

after	circular	convolution	(and	upsampling	before	circular	convolution).	Still,	we	have	outlined

this	approach	because	it	is	easy	to	understand	and	still	results	in	major	saving	when	M	is	large:	it

converts	the	O(	M	2)	matrix	multiply	into	an	O(	M	log2	M)	operation.

DWT	Applications	-	Choice	of	phi(t)*

Transforms	are	signal	processing	tools	that	are	used	to	give	a	clear	view	of	essential	signal

characteristics.	Fourier	transforms	are	ideal	for	infinite-duration	signals	that	contain	a	relatively

small	number	of	sinusoids:	one	can	completely	describe	the	signal	using	only	a	few	coefficients.

Fourier	transforms,	however,	are	not	well-suited	to	signals	of	a	non-sinusoidal	nature	(as

discussed	earlier	in	the	context	of	time-frequency	analysis).	The	multi-resolution	DWT	is	a	more
general	transform	that	is	well-suited	to	a	larger	class	of	signals.	For	the	DWT	to	give	an	efficient

description	of	the	signal,	however,	we	must	choose	a	wavelet	ψ(	t)	from	which	the	signal	can	be

constructed	(to	a	good	approximation)	using	only	a	few	stretched	and	shifted	copies.

We	illustrate	this	concept	in	Figure	4.37	using	two	examples.	On	the	left,	we	analyze	a	step-like

waveform,	while	on	the	right	we	analyze	a	chirp-like	waveform.	In	both	cases,	we	try	DWTs	based



on	the	Haar	and	Daubechies	db10	wavelets	and	plot	the	log	magnitudes	of	the	transform

coefficients	[	c	T

T

T

T

T

k	,	dk	,	d	k	−	1	,	d	k	−	2	,	…,	d	1	]	.

Figure	4.37.

Observe	that	the	Haar	DWT	yields	an	extremely	efficient	representation	of	the	step-waveform:

only	a	few	of	the	transform	coefficients	are	nonzero.	The	db10	DWT	does	not	give	an	efficient

representation:	many	coefficients	are	sizable.	This	makes	sense	because	the	Haar	scaling	function

is	well	matched	to	the	step-like	nature	of	the	time-domain	signal.	In	contrast,	the	Haar	DWT	does

not	give	an	efficient	representation	of	the	chirp-like	waveform,	while	the	db10	DWT	does	better.

This	makes	sense	because	the	sharp	edges	of	the	Haar	scaling	function	do	not	match	the	smooth

chirp	signal,	while	the	smoothness	of	the	db10	wavelet	yields	a	better	match.

DWT	Application	-	De-noising*

Say	that	the	DWT	for	a	particular	choice	of	wavelet	yields	an	efficient	representation	of	a

particular	signal	class.	In	other	words,	signals	in	the	class	are	well-described	using	a	few	large

transform	coefficients.

Now	consider	unstructured	noise,	which	cannot	be	eifficiently	represented	by	any	transform,

including	the	DWT.	Due	to	the	orthogonality	of	the	DWT,	such	noise	sequences	make,	on	average,

equal	contributions	to	all	transform	coefficients.	Any	given	noise	sequence	is	expected	to	yield

many	small-valued	transform	coefficients.

Together,	these	two	ideas	suggest	a	means	of	de-noising	a	signal.	Say	that	we	perform	a	DWT	on



a	signal	from	our	well-matched	signal	class	that	has	been	corrupted	by	additive	noise.	We	expect

that	large	transform	coefficients	are	composed	mostly	of	signal	content,	while	small	transform

coefficients	should	be	composed	mostly	of	noise	content.	Hence,	throwing	away	the	transform

coefficients	whose	magnitude	is	less	than	some	small	threshold	should	improve	the	signal-to-

noise	ratio.	The	de-noising	procedure	is	illustrated	in	Figure	4.38.

Figure	4.38.

Now	we	give	an	example	of	denoising	a	step-like	waveform	using	the	Haar	DWT.	In	Figure	4.39,

the	top	right	subplot	shows	the	noisy	signal	and	the	top	left	shows	it	DWT	coefficients.	Note	the

presence	of	a	few	large	DWT	coefficients,	expected	to	contain	mostly	signal	components,	as	well

as	the	presence	of	many	small-valued	coefficients,	expected	to	contain	noise.	(The	bottom	left

subplot	shows	the	DWT	for	the	original	signal	before	any	noise	was	added,	which	confirms	that

all	signal	energy	is	contained	within	a	few	large	coefficients.)	If	we	throw	away	all	DWT

coefficients	whose	magnitude	is	less	than	0.1,	we	are	left	with	only	the	large	coefficients	(shown

in	the	middle	left	plot)	which	correspond	to	the	de-noised	time-domain	signal	shown	in	the	middle

right	plot.	The	difference	between	the	de-noised	signal	and	the	original	noiseless	signal	is	shown

in	the	bottom	right.	Non-zero	error	results	from	noise	contributions	to	the	large	coefficients;	there

is	no	way	of	distinguishing	these	noise	components	from	signal	components.



Figure	4.39.

Solutions

Chapter	5.	Multirate	Signal	Processing

5.1.	Overview	of	Multirate	Signal	Processing*

Digital	transformation	of	the	sampling	rate	of	signals,	or	signal	processing	with	different

sampling	rates	in	the	system.

Applications

1.	Sampling-rate	conversion:	CD	to	DAT	format	change,	for	example.

2.	Improved	D/A,	A/D	conversion:	oversampling	converters;	which	reduce	performance

requirements	on	anti-aliasing	or	reconstruction	filters

3.	FDM	channel	modulation	and	processing:	bandwidth	of	individual	channels	is	much	less

than	the	overall	bandwidth

4.	Subband	coding	of	speech	and	images:	Eyes	and	ears	are	not	as	sensitive	to	errors	in	higher

frequency	bands,	so	many	coding	schemes	split	signals	into	different	frequency	bands	and



quantize	higher-frequency	bands	with	much	less	precision.

Outline	of	Multirate	DSP	material

1.	General	Rate-changing	System

2.	Integer-factor	Interpolation	and	Decimation	and	Rational-factor	Rate	Changing

3.	Efficient	Multirate	Filter	Structures

4.	Optimal	Filter	Design	for	Multirate	Systems

5.	Multi-stage	Multirate	Systems

6.	Oversampling	D/As

7.	Perfect-Reconstruction	Filter	Banks	and	Quadrature	Mirror	Filters

General	Rate-Changing	Procedure

This	procedure	is	motivated	by	an	analog-based	method:	one	conceptually	simple	method	to



change	the	sampling	rate	is	to	simply	convert	a	digital	signal	to	an	analog	signal	and	resample	it!

(Figure	5.1)

Figure	5.1.

Recall	the	ideal	D/A:

()

The	problems	with	this	scheme	are:

1.	A/D,	D/A,	filters	cost	money

2.	imperfections	in	these	devices	introduce	errors

Digital	implementation	of	rate-changing	according	to	this	formula	has	three	problems:

1.	Infinite	sum:	The	solution	is	to	truncate.	Consider	sinc	t≈0	for	t<	t	1	,	t>	t	2	:	Then	mT	1−	nT	0<	t	1
and	mT	1−	nT	0>	t	2	which	implies

This	is	essentially	lowpass	filter	design	using	a	boxcar	window:	other	finite-length	filter

design	methods	could	be	used	for	this.

2.	Lack	of	causality:	The	solution	is	to	delay	by	max{|	N|}	samples.	The	mathematics	of	the	analog
portions	of	this	system	can	be	implemented	digitally.

http://cnx.org/content/m2102/latest/#causality


()

()

So	we	have	an	all-digital	formula	for	exact	digital-to-digital	rate	changing!

3.	Cost	of	computing	sinc	T′(	mT	1−	nT	0)	:	The	solution	is	to	precompute	the	table	of	sinc(	t)	values.

However,	if

is	not	a	rational	fraction,	an	infinite	number	of	samples	will	be	needed,	so

some	approximation	will	have	to	be	tolerated.

Rate	transformation	of	any	rate	to	any	other	rate	can	be	accomplished	digitally	with

arbitrary	precision	(if	some	delay	is	acceptable).	This	method	is	used	in	practice	in	many

cases.	We	will	examine	a	number	of	special	cases	and	computational	improvements,	but	in

some	sense	everything	that	follows	are	details;	the	above	idea	is	the	central	idea	in

multirate	signal	processing.

Useful	references	for	the	traditional	material	(everything	except	PRFBs)	are	Crochiere	and

Rabiner,	1981	[link]	and	Crochiere	and	Rabiner,	1983	[link].	A	more	recent	tutorial	is	Vaidyanathan
[link];	see	also	Rioul	and	Vetterli	[link].	References	to	most	of	the	original	papers	can	be	found	in	these
tutorials.
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5.2.	Interpolation,	Decimation,	and	Rate	Changing	by

Integer	Fractions*

Interpolation:	by	an	integer	factor	L

Interpolation	means	increasing	the	sampling	rate,	or	filling	in	in-between	samples.	Equivalent	to

sampling	a	bandlimited	analog	signal	L	times	faster.	For	the	ideal	interpolator,

()

We	wish	to	accomplish	this	digitally.	Consider	Equation	and	Figure	5.2.

()

Figure	5.2.

The	DTFT	of	y(	m)	is



()

Since	X	0(	ω′)	is	periodic	with	a	period	of	2	π	,	X	0(	Lω)=	Y(	ω)	is	periodic	with	a	period	of	(see

Figure	5.3).

Figure	5.3.

By	inserting	zero	samples	between	the	samples	of	x	0(	n)	,	we	obtain	a	signal	with	a	scaled

frequency	response	that	simply	replicates	X	0(	ω′)	L	times	over	a	2	π	interval!

Obviously,	the	desired	x	1(	m)	can	be	obtained	simply	by	lowpass	filtering	y(	m)	to	remove	the

replicas.

()

x	1(	m)=	y(	m)*	hL(	m)

Given

In	practice,	a	finite-length	lowpass	filter	is	designed	using	any	of	the

methods	studied	so	far	(Figure	5.4).

Figure	5.4.	Interpolator	Block	Diagram

Decimation:	sampling	rate	reduction	(by	an	integer	factor	M)

Let	y(	m)=	x	0(	Lm)	(Figure	5.5)

Figure	5.5.



That	is,	keep	only	every	L	th	sample	(Figure	5.6)

Figure	5.6.

In	frequency	(DTFT):

()

Now

for	|	ω|<	π	as	shown	in	homework	#1	,	where	X(	k)	is	the



DFT	of	one	period	of	the	periodic	sequence.	In	this	case,	X(	k)=1	for	k∈{0,	1,	…,	M−1}	and

.

()

so

i.e.	,	we	get	digital	aliasing.(Figure	5.7)

Figure	5.7.

Usually,	we	prefer	not	to	have	aliasing,	so	the	downsampler	is	preceded	by	a	lowpass	filter	to

remove	all	frequency	components	above

(Figure	5.8).

Figure	5.8.



Rate-Changing	by	a	Rational	Fraction	L/M

This	is	easily	accomplished	by	interpolating	by	a	factor	of	L,	then	decimating	by	a	factor	of	M

(Figure	5.9).

Figure	5.9.

The	two	lowpass	filters	can	be	combined	into	one	LP	filter	with	the	lower	cutoff,

Obviously,	the	computational	complexity	and	simplicity	of

implementation	will	depend	on	:	2/3	will	be	easier	to	implement	than	1061/1060	!

5.3.	Efficient	Multirate	Filter	Structures*

Rate-changing	appears	expensive	computationally,	since	for	both	decimation	and	interpolation	the

lowpass	filter	is	implemented	at	the	higher	rate.	However,	this	is	not	necessary.

Interpolation

For	the	interpolator,	most	of	the	samples	in	the	upsampled	signal	are	zero,	and	thus	require	no



computation.	(Figure	5.10)

Figure	5.10.

For

and	p=	m	mod	L	,

()

gp(	n)=	h(	Ln+	p)	Pictorially,	this	can	be	represented	as	in	Figure	5.11.

Figure	5.11.

These	are	called	polyphase	structures,	and	the	gp(	n)	are	called	polyphase	filters.

Computational	cost

If	h(	m)	is	a	length-	N	filter:

No	simplification:

Polyphase	structure:

where	L	is	the	number	of	filters,	is	the	taps/filter,



and

is	the	rate.

Thus	we	save	a	factor	of	L	by	not	being	dumb.

For	a	given	precision,	N	is	proportional	to	L,	(why?),	so	the	computational	cost	does	increase

with	the	interpolation	rate.

Question

Can	similar	computational	savings	be	obtained	with	IIR	structures?

Efficient	Decimation	Structures

We	only	want	every	M	th	output,	so	we	compute	only	the	outputs	of	interest.	(Figure	5.12)

Figure	5.12.	Polyphase	Decimation	Structure

The	decimation	structures	are	flow-graph	reversals	of	the	interpolation	structure.	Although	direct

implementation	of	the	full	filter	for	every	M	th	sample	is	obvious	and	straightforward,	these

polyphase	structures	give	some	idea	as	to	how	one	might	evenly	partition	the	computation	over	M



cycles.

Efficient	L/M	rate	changers

Interpolate	by	L	and	decimate	by	M	(Figure	5.13).

Figure	5.13.

Combine	the	lowpass	filters	(Figure	5.14).

Figure	5.14.

We	can	couple	the	lowpass	filter	either	to	the	interpolator	or	the	decimator	to	implement	it

efficiently	(Figure	5.15).

Figure	5.15.

Of	course	we	only	compute	the	polyphase	filter	output	selected	by	the	decimator.

Computational	Cost

Every

,	compute	one	polyphase	filter	of	length	,	or

However,

note	that	N	is	proportional	to	max{	L,	M}	.



5.4.	Filter	Design	for	Multirate	Systems*

The	filter	design	techniques	learned	earlier	can	be	applied	to	the	design	of	filters	in	multirate	systems,
with	a	few	twists.

Example	5.1.

Design	a	factor-of-	L	interpolator	for	use	in	a	CD	player,	we	might	wish	that	the	out-of-band

error	be	below	the	least	significant	bit,	or	96dB	down,	and	<	0.05	%	error	in	the	passband,	so

these	specifications	could	be	used	for	optimal	L∞	filter	design.

In	a	CD	player,	the	sampling	rate	is	44.1kHz,	corresponding	to	a	Nyquist	frequency	of	22.05kHz,

but	the	sampled	signal	is	bandlimited	to	20kHz.	This	leaves	a	small	transition	band,	from	20kHz

to	24.1kHz.	However,	note	that	in	any	case	where	the	signal	spectrum	is	zero	over	some	band,	this

introduces	other	zero	bands	in	the	scaled,	replicated	spectrum	(Figure	5.16).

http://cnx.org/content/col10285/latest/


Figure	5.16.

So	we	need	only	control	the	filter	response	in	the	stopbands	over	the	frequency	regions	with

nonzero	energy.	(Figure	5.17)

Figure	5.17.

The	extra	"don't	care"	bands	allow	a	given	set	of	specifications	to	be	satisfied	with	a	shorter-

length	filter.

Direct	polyphase	filter	design

Note	that	in	an	integer-factor	interpolator,	each	set	of	output	samples	x	1(	Ln+	p)	,

p={0,	1,	…,	L−1}	,	is	created	by	a	different	polyphase	filter	gp(	n)	,	which	has	no	interaction	with	the
other	polyphase	filters	except	in	that	they	each	interpolate	the	same	signal.	We	can	thus	treat

the	design	of	each	polyphase	filter	independently,	as	an	-length	filter	design	problem.

(Figure	5.18)

Figure	5.18.

Each	gp(	n)	produces	samples

,	where

is	not	an	integer.	That	is,	gp(	n)	is	to

produce	an	output	signal	(at	a	T	0	rate)	that	is	x	0(	n)	time-advanced	by	a	non-integer	advance	.

The	desired	response	of	this	polyphase	filter	is	thus

for	|	ω|≤	π	,	an	all-pass	filter	with	a



linear,	non-integer,	phase.	Each	polyphase	filter	can	be	designed	independently	to	approximate

this	response	according	to	any	of	the	design	criteria	developed	so	far.

Exercise	1.

What	should	the	polyphase	filter	for	p=0	be?

A	delta	function:	h	0(	n)=	δ(	n′)

Example	5.2.	Least-squares	Polyphase	Filter	Design

Deterministic	x(n):	Minimize

Given	x(	n)=	x(	n)*	h(	n)	and	xd(	n)=	x(	n)*	hd(	n)	.

Using	Parseval's	theorem,	this	becomes

()

This	is	simply	weighted	least	squares	design,	with	(|	X(	ω)|)2	as	the	weighting	function.

stochastic	X(ω):

()

Sxx(	ω)	is	the	power	spectral	density	of	x.	Sxx(	ω)=DTFT[	rxx(	k)]

Again,	a

weighted	least	squares	filter	design	problem.

Problem

Is	it	feasible	to	use	IIR	polyphase	filters?

The	recursive	feedback	of	previous	outputs	means	that	portions	of	each	IIR	polyphase	filter

must	be	computed	for	every	input	sample;	this	usually	makes	IIR	filters	more	expensive	than

FIR	implementations.

5.5.	Multistage	Multirate	Systems*



Multistage	multirate	systems	are	often	more	efficient.	Suppose	one	wishes	to	decimate	a	signal	by

an	integer	factor	M,	where	M	is	a	composite	integer

.	A	decimator	can	be

implemented	in	a	multistage	fashion	by	first	decimating	by	a	factor	M	1	,	then	decimating	this

signal	by	a	factor	M	2	,	etc.	(Figure	5.19)

Figure	5.19.	Multistage	decimator

Multistage	implementations	are	of	significant	practical	interest	only	if	they	offer	significant

computational	savings.	In	fact,	they	often	do!

The	computational	cost	of	a	single-stage	interpolator	is:

The	computational	cost	of	a



multistage	interpolator	is:

The	first	term	is	the	most	significant,	since	the

rate	is	highest.	Since	(	Ni	∝	Mi)	for	a	lowpass	filter,	it	is	not	immediately	clear	that	a	multistage

system	should	require	less	computation.	However,	the	multistage	structure	relaxes	the

requirements	on	the	filters,	which	reduces	their	length	and	makes	the	overall	computation	less.

Filter	design	for	Multi-stage	Structures

Ostensibly,	the	first-stage	filter	must	be	a	lowpass	filter	with	a	cutoff	at

,	to	prevent	aliasing

after	the	downsampler.	However,	note	that	aliasing	outside	the	final	overall	passband

is	of

no	concern,	since	it	will	be	removed	by	later	stages.	We	only	need	prevent	aliasing	into	the	band

;	thus	we	need	only	specify	the	passband	over	the	interval

,	and	the	stopband	over	the

intervals

,	for	k∈{1,	…,	M−1}	.	(Figure	5.20)



Figure	5.20.

Of	course,	we	don't	want	gain	in	the	transition	bands,	since	this	would	need	to	be	suppressed	later,

but	otherwise	we	don't	care	about	the	response	in	those	regions.	Since	the	transition	bands	are	so

large,	the	required	filter	turns	out	to	be	quite	short.	The	final	stage	has	no	"don't	care"	regions;

however,	it	is	operating	at	a	low	rate,	so	it	is	relatively	unimportant	if	the	final	filter	turns	out	to

be	rather	long!

L-infinity	Tolerances	on	the	Pass	and	Stopbands

The	overall	response	is	a	cascade	of	multiple	filters,	so	the	worst-case	overall	passband	deviation,

assuming	all	the	peaks	just	happen	to	line	up,	is

So	one	could

choose	all	filters	to	have	equal	specifications	and	require	for	each-stage	filter.	For	(	δp	≪	1)	,

ov

Alternatively,	one	can	design	later	stages	(at	lower

computation	rates)	to	compensate	for	the	passband	ripple	in	earlier	stages	to	achieve	exceptionally

accurate	passband	response.

δs	remains	essentially	unchanged,	since	the	worst-case	scenario	is	for	the	error	to	alias	into	the

passband	and	undergo	no	further	suppression	in	subsequent	stages.

Interpolation

Interpolation	is	the	flow-graph	reversal	of	the	multi-stage	decimator.	The	first	stage	has	a	cutoff

at	(Figure	5.21):

Figure	5.21.

However,	all	subsequent	stages	have	large	bands	without	signal	energy,	due	to	the	earlier	stages



(Figure	5.22):

Figure	5.22.

The	order	of	the	filters	is	reversed,	but	otherwise	the	filters	are	identical	to	the	decimator	filters.

Efficient	Narrowband	Lowpass	Filtering

A	very	narrow	lowpass	filter	requires	a	very	long	FIR	filter	to	achieve	reasonable	resolution	in	the

frequency	response.	However,	were	the	input	sampled	at	a	lower	rate,	the	cutoff	frequency	would

be	correspondingly	higher,	and	the	filter	could	be	shorter!

The	transition	band	is	also	broader,	which	helps	as	well.	Thus,	Figure	5.23	can	be	implemented	as

Figure	5.24.

Figure	5.23.

Figure	5.24.

and	in	practice	the	inner	lowpass	filter	can	be	coupled	to	the	decimator	or	interpolator	filters.	If

the	decimator	and	interpolator	are	implemented	as	multistage	structures,	the	overall	algorithm	can

be	dramatically	more	efficient	than	direct	implementation!

5.6.	DFT-Based	Filterbanks*

One	common	application	of	multirate	processing	arises	in	multirate,	multi-channel	filter	banks

(Figure	5.25).



Figure	5.25.

One	application	is	separating	frequency-division-multiplexed	channels.	If	the	filters	are

narrowband,	the	output	channels	can	be	decimated	without	significant	aliasing.

Such	structures	are	especially	attractive	when	they	can	be	implemented	efficiently.	For	example,

if	the	filters	are	simply	frequency	modulated	(by

)	versions	of	each	other,	they	can	be

efficiently	implemented	using	FFTs!

Furthermore,	there	are	classes	of	filters	called	perfect	reconstruction	filters	which	are	of	finite

length	but	from	which	the	signal	can	be	reconstructed	exactly	(using	all	M	channels),	even	though

the	output	of	each	channel	experiences	aliasing	in	the	decimation	step.	These	types	of	filterbanks

have	received	a	lot	of	research	attention,	culminating	in	wavelet	theory	and	techniques.

Uniform	DFT	Filter	Banks

Suppose	we	wish	to	split	a	digital	input	signal	into	N	frequency	bands,	uniformly	spaced	at	center



frequencies

,	for	0≤	k≤	N−1	.	Consider	also	a	lowpass	filter	h(	n)	,

.	Bandpass

filters	can	be	constructed	which	have	the	frequency	response

from

The	output	of	the	k	th	bandpass	filter	is	simply	(assume	h(	n)	are	FIR)

()

This	looks	suspiciously	like	a	DFT,	except	that	M≠	N	,	in	general.	However,	if	we	fix	M=	N	,	then

we	can	compute	all	yk(	n)	outputs	simultaneously	using	an	FFT	of	x(	n−	m)	h(	m)	:	The	kth	FFT
frequency	output=	yk(	n)	!	So	the	cost	of	computing	all	of	these	filter	banks	outputs	is

O[	NlogN]	,	rather	than	N	2	,	per	a	given	n.	This	is	very	useful	for	efficient	implementation	of
transmultiplexors	(FDM	to	TDM).

Exercise	2.

How	would	we	implement	this	efficiently	if	we	wanted	to	decimate	the	individual	channels

yk(	n)	by	a	factor	of	N,	to	their	approximate	Nyquist	bandwidth?

Simply	step	by	N	time	samples	between	FFTs.

Exercise	3.

Do	you	expect	significant	aliasing?	If	so,	how	do	you	propose	to	combat	it?	Efficiently?

Aliasing	should	be	expected.	There	are	two	ways	to	reduce	it:

1.	Decimate	by	less	("oversample"	the	individual	channels)	such	as	decimating	by	a	factor	of	.

This	is	efficiently	done	by	time-stepping	by	the	appropriate	factor.



2.	Design	better	(and	thus	longer)	filters,	say	of	length	LN	.	These	can	be	efficiently	computed

by	producing	only	N	(every	L	th)	FFT	outputs	using	simplified	FFTs.

Exercise	4.

How	might	one	convert	from	N	input	channels	into	an	FDM	signal	efficiently?	(Figure	5.25)

Figure	5.25.

Such	systems	are	used	throughout	the	telephone	system,	satellite	communication	links,	etc.

Use	an	FFT	and	an	inverse	FFT	for	the	modulation	(TDM	to	FDM)	and	demodulation	(FDM	to

TDM),	respectively.

5.7.	Quadrature	Mirror	Filterbanks	(QMF)*

Although	the	DFT	filterbanks	are	widely	used,	there	is	a	problem	with	aliasing	in	the	decimated

channels.	At	first	glance,	one	might	think	that	this	is	an	insurmountable	problem	and	must	simply

be	accepted.	Clearly,	with	FIR	filters	and	maximal	decimation,	aliasing	will	occur.	However,	a

simple	example	will	show	that	it	is	possible	to	exactly	cancel	out	aliasing	under	certain

conditions!!!



Consider	the	following	trivial	filterbank	system,	with	two	channels.	(Figure	5.26)

Figure	5.26.

Note

with	no	error	whatsoever,	although	clearly	aliasing	occurs	in	both	channels!	Note

that	the	overall	data	rate	is	still	the	Nyquist	rate,	so	there	are	clearly	enough	degrees	of	freedom

available	to	reconstruct	the	data,	if	the	filterbank	is	designed	carefully.	However,	this	isn't

splitting	the	data	into	separate	frequency	bands,	so	one	questions	whether	something	other	than

this	trivial	example	could	work.

Let's	consider	a	general	two-channel	filterbank,	and	try	to	determine	conditions	under	which

aliasing	can	be	cancelled,	and	the	signal	can	be	reconstructed	perfectly	(Figure	5.27).

Figure	5.27.

Let's	derive

,	using	z-transforms,	in	terms	of	the	components	of	this	system.	Recall

(Figure	5.28)	is	equivalent	to	Y(	z)=	H(	z)	X(	z)	Y(	ω)=	H(	ω)	X(	ω)	Figure	5.28.

and	note	that	(Figure	5.29)	is	equivalent	to

Y(	ω)=	X(	Lω)

Figure	5.29.



and	(Figure	5.30)	is	equivalent	to

Figure	5.30.

Y(	z)	is	derived	in	the	downsampler	as	follows:

Let	n=	Mm	and

,	then

Now

()

so

()



Armed	with	these	results,	let's	determine

.	(Figure	5.31)

Figure	5.31.

Note	U	1(	z)=	X(	z)	H	0(	z)

and

Finally	then,

()

Note	that	the	(	X(–	z)	→	X(	ω+	π))	corresponds	to	the	aliasing	terms!

There	are	four	things	we	would	like	to	have:

1.	No	aliasing	distortion

2.	No	phase	distortion	(overall	linear	phase	→	simple	time	delay)

3.	No	amplitude	distortion

4.	FIR	filters

No	aliasing	distortion

By	insisting	that	H	0(–	z)	F	0(	z)+	H	1(–	z)	F	1(	z)=0	,	the	X(–	z)	component	of	can	be	removed,	and	all



aliasing	will	be	eliminated!	There	may	be	many	choices	for	H	0	,	H	1	,	F	0	,	F	1	that	eliminate

aliasing,	but	most	research	has	focused	on	the	choice	F	0(	z)=	H	1(–	z)	:	F	1(	z)=–(	H	0(–	z))	We	will
consider	only	this	choice	in	the	following	discussion.

Phase	distortion

The	transfer	function	of	the	filter	bank,	with	aliasing	cancelled,	becomes

,

which	with	the	above	choice	becomes

.	We	would	like	T(	z)	to	correspond

to	a	linear-phase	filter	to	eliminate	phase	distortion:	Call	P(	z)=	H	0(	z)	H	1(–	z)	Note	that	Note	that	(
P(–	z)	⇔	(–1)	np(	n))	,	and	that	if	p(	n)	is	a	linear-phase	filter,	(–1)	np(	n)	is	also	(perhaps	of	the	opposite
symmetry).	Also	note	that	the	sum	of	two	linear-phase	filters	of	the

same	symmetry	(	i.e.	,	length	of	p(	n)	must	be	odd)	is	also	linear	phase,	so	if	p(	n)	is	an	odd-length
linear-phase	filter,	there	will	be	no	phase	distortion.	Also	note	that

means	p(	n)=0	,	when	n	is	even.	If	we	choose	h	0(	n)	and

h	1(	n)	to	be	linear	phase,	p(	n)	will	also	be	linear	phase.	Thus	by	choosing	h	0(	n)	and	h	1(	n)	to	be	FIR

linear	phase,	we	eliminate	phase	distortion	and	get	FIR	filters	as	well	(condition	4).

Amplitude	distortion

Assuming	aliasing	cancellation	and	elimination	of	phase	distortion,	we	might	also	desire	no

amplitude	distortion	(	|	T(	ω)|=1	).	All	of	these	conditions	require

where	c	is	some	constant	and	D	is	a	linear	phase	delay.	c=1	for	|	T(	ω)|=1	.	It	can	be	shown	by
considering	that	the	following	can	be	satisfied!



Thus	we	require

Any	factorization	of	a	P(	z)	of	this	form,	P(	z)=	A(	z)	B(	z)	can

lead	to	a	Perfect	Reconstruction	filter	bank	of	the	form	H	0(	z)=	A(	z)	H	1(–	z)=	B(	z)	[This	result	is
attributed	to	Vetterli.]	A	well-known	special	case	(Smith	and	Barnwell)

H	1(	z)=–(	z–(2	D)+1	H	0(–(	z-1)))	Design	techniques	exist	for	optimally	choosing	the	coefficients	of
these	filters,	under	all	of	these	constraints.

(5.1)

Quadrature	Mirror	Filters

(	H

*

1(	z)=	H	0(–	z)	⇔	H	1(	ω)=	H	0(	π+	ω)=	H	0	(	π−	ω))	for	real-valued	filters.	The	frequency	response	is
"mirrored"	around

.	This	choice	leads	to

T(	z)=	H	2

2

0	(	z)−	H	0	(–	z)	:	it	can	be	shown	that	this	can	be	a	perfect	reconstruction	system	only	if

H	0(	z)=	c	0	z–(2	n	0)+	c	1	z–(2	n	1)	which	isn't	a	very	flexible	choice	of	filters,	and	not	a	very	good
lowpass!

The	Smith	and	Barnwell	approach	is	more	commonly	used	today.

5.8.	M-Channel	Filter	Banks*

The	theory	of	M-band	QMFBs	and	PRFBs	has	been	investigated	recently.	Some	results	are

available.

Tree-structured	filter	banks

Once	we	have	a	two-band	PRFB,	we	can	continue	to	split	the	subbands	with	similar	systems!

(Figure	5.32)

Figure	5.32.

Thus	we	can	recursively	decompose	a	signal	into	2	p	bands,	each	sampled	at	2	p	th	the	rate	of	the



original	signal,	and	reconstruct	exactly!	Due	to	the	tree	structure,	this	can	be	quite	efficient,	and	in

fact	close	to	the	efficiency	of	an	FFT	filter	bank,	which	does	not	have	perfect	reconstruction.

Wavelet	decomposition

We	need	not	split	both	the	upper-frequency	and	lower-frequency	bands	identically.	(Figure	5.33)

Figure	5.33.

This	is	good	for	image	coding,	because	the	energy	tends	to	be	distributed	such	that	after	a	wavelet

decomposition,	each	band	has	roughly	equal	energy.

Solutions

Chapter	6.	Digital	Filter	Structures	and	Quantization

Error	Analysis

6.1.	Filter	Structures

Filter	Structures*



A	realizable	filter	must	require	only	a	finite	number	of	computations	per	output	sample.	For

linear,	causal,	time-Invariant	filters,	this	restricts	one	to	rational	transfer	functions	of	the	form

Assuming	no	pole-zero	cancellations,	H(	z)	is	FIR	if	ai=0	,	i>0	,	and

IIR	otherwise.	Filter	structures	usually	implement	rational	transfer	functions	as	difference

equations.

Whether	FIR	or	IIR,	a	given	transfer	function	can	be	implemented	with	many	different	filter

structures.	With	infinite-precision	data,	coefficients,	and	arithmetic,	all	filter	structures

implementing	the	same	transfer	function	produce	the	same	output.	However,	different	filter

strucures	may	produce	very	different	errors	with	quantized	data	and	finite-precision	or	fixed-point

arithmetic.	The	computational	expense	and	memory	usage	may	also	differ	greatly.	Knowledge	of

different	filter	structures	allows	DSP	engineers	to	trade	off	these	factors	to	create	the	best

implementation.

FIR	Filter	Structures*

Consider	causal	FIR	filters:

;	this	can	be	realized	using	the	following	structure

Figure	6.1.



or	in	a	different	notation

Figure	6.2.

(a)

(b)

(c)

Figure	6.3.

This	is	called	the	direct-form	FIR	filter	structure.

There	are	no	closed	loops	(no	feedback)	in	this	structure,	so	it	is	called	a	non-recursive

structure.	Since	any	FIR	filter	can	be	implemented	using	the	direct-form,	non-recursive	structure,

it	is	always	possible	to	implement	an	FIR	filter	non-recursively.	However,	it	is	also	possible	to

implement	an	FIR	filter	recursively,	and	for	some	special	sets	of	FIR	filter	coefficients	this	is

much	more	efficient.

Example	6.1.

where

But	note	that

y(	n)=	y(	n−1)+	x(	n)−	x(	n−	M)	This	can	be	implemented	as



Figure	6.4.

Instead	of	costing	M−1	adds/output	point,	this	comb	filter	costs	only	two	adds/output.

Exercise	1.

Is	this	stable,	and	if	not,	how	can	it	be	made	so?

IIR	filters	must	be	implemented	with	a	recursive	structure,	since	that's	the	only	way	a	finite

number	of	elements	can	generate	an	infinite-length	impulse	response	in	a	linear,	time-invariant

(LTI)	system.	Recursive	structures	have	the	advantages	of	being	able	to	implement	IIR	systems,

and	sometimes	greater	computational	efficiency,	but	the	disadvantages	of	possible	instability,

limit	cycles,	and	other	deletorious	effects	that	we	will	study	shortly.

Transpose-form	FIR	filter	structures

The	flow-graph-reversal	theorem	says	that	if	one	changes	the	directions	of	all	the	arrows,	and

inputs	at	the	output	and	takes	the	output	from	the	input	of	a	reversed	flow-graph,	the	new	system

has	an	identical	input-output	relationship	to	the	original	flow-graph.

Figure	6.5.	Direct-form	FIR	structure



Figure	6.6.	reverse	=	transpose-form	FIR	filter	structure

Figure	6.7.	or	redrawn

Cascade	structures

The	z-transform	of	an	FIR	filter	can	be	factored	into	a	cascade	of	short-length	filters

b	0+	b	1	z-1+	b	2	z-3+	…+	bmz–	m=	b	0(1−	z	1	z-1)(1−	z	2	z-1)	…(1−	zmz-1)	where	the	zi	are	the	zeros
of	this	polynomial.	Since	the	coefficients	of	the	polynomial	are	usually	real,	the	roots	are	usually

complex-conjugate	pairs,	so	we	generally	combine

into	one	quadratic	(length-2)

section	with	real	coefficients

The	overall	filter	can	then	be

implemented	in	a	cascade	structure.

Figure	6.8.

This	is	occasionally	done	in	FIR	filter	implementation	when	one	or	more	of	the	short-length

filters	can	be	implemented	efficiently.

Lattice	Structure

It	is	also	possible	to	implement	FIR	filters	in	a	lattice	structure:	this	is	sometimes	used	in

adaptive	filtering

Figure	6.9.

IIR	Filter	Structures*



IIR	(Infinite	Impulse	Response)	filter	structures	must	be	recursive	(use	feedback);	an	infinite

number	of	coefficients	could	not	otherwise	be	realized	with	a	finite	number	of	computations	per

sample.

The	corresponding	time-domain	difference	equation	is

y(	n)=–(	a	1	y(	n−1))−	a	2	y(	n−2)+	…−	aNy(	n−	N)+	b	0	x(0)+	b	1	x(	n−1)+	…+	bMx(	n−	M)	Direct-
form	I	IIR	Filter	Structure

The	difference	equation	above	is	implemented	directly	as	written	by	the	Direct-Form	I	IIR	Filter

Structure.

Figure	6.10.

Note	that	this	is	a	cascade	of	two	systems,	N(	z)	and

.	If	we	reverse	the	order	of	the	filters,	the

overall	system	is	unchanged:	The	memory	elements	appear	in	the	middle	and	store	identical



values,	so	they	can	be	combined,	to	form	the	Direct-Form	II	IIR	Filter	Structure.

Direct-Form	II	IIR	Filter	Structure

Figure	6.11.

This	structure	is	canonic:	(i.e.,	it	requires	the	minimum	number	of	memory	elements).

Flowgraph	reversal	gives	the

Transpose-Form	IIR	Filter	Structure



Figure	6.12.

Usually	we	design	IIR	filters	with	N=	M	,	but	not	always.

Obviously,	since	all	these	structures	have	identical	frequency	response,	filter	structures	are	not

unique.	We	consider	many	different	structures	because

1.	Depending	on	the	technology	or	application,	one	might	be	more	convenient	than	another

2.	The	response	in	a	practical	realization,	in	which	the	data	and	coefficients	must	be	quantized,

may	differ	substantially,	and	some	structures	behave	much	better	than	others	with

quantization.

The	Cascade-Form	IIR	filter	structure	is	one	of	the	least	sensitive	to	quantization,	which	is	why	it

is	the	most	commonly	used	IIR	filter	structure.

IIR	Cascade	Form

The	numerator	and	denominator	polynomials	can	be	factored



and	implemented	as	a	cascade	of	short	IIR	filters.

Figure	6.13.

Since	the	filter	coefficients	are	usually	real	yet	the	roots	are	mostly	complex,	we	actually

implement	these	as	second-order	sections,	where	comple-conjugate	pole	and	zero	pairs	are

combined	into	second-order	sections	with	real	coefficients.	The	second-order	sections	are	usually

implemented	with	either	the	Direct-Form	II	or	Transpose-Form	structure.

Parallel	form

A	rational	transfer	function	can	also	be	written	as

which	by	linearity	can	be	implemented	as

Figure	6.14.

As	before,	we	combine	complex-conjugate	pole	pairs	into	second-order	sections	with	real



coefficients.

The	cascade	and	parallel	forms	are	of	interest	because	they	are	much	less	sensitive	to	coefficient

quantization	than	higher-order	structures,	as	analyzed	in	later	modules	in	this	course.

Other	forms

There	are	many	other	structures	for	IIR	filters,	such	as	wave	digital	filter	structures,	lattice-ladder,

all-pass-based	forms,	and	so	forth.	These	are	the	result	of	extensive	research	to	find	structures

which	are	computationally	efficient	and	insensitive	to	quantization	error.	They	all	represent

various	tradeoffs;	the	best	choice	in	a	given	context	is	not	yet	fully	understood,	and	may	never	be.

State-Variable	Representation	of	Discrete-Time	Systems*

State	and	the	State-Variable	Representation

Definition:	State

the	minimum	additional	information	at	time	n,	which,	along	with	all	current	and	future	input

values,	is	necessary	to	compute	all	future	outputs.

Essentially,	the	state	of	a	system	is	the	information	held	in	the	delay	registers	in	a	filter	structure

or	signal	flow	graph.

Fact

Any	LTI	(linear,	time-invariant)	system	of	finite	order	M	can	be	represented	by	a	state-

variable	description	x(	n+1)=	Ax(	n)+B	u(	n)	y(	n)=Cx(	n)+	Du(	n)	where	x	is	an	(	M	x	1)	"state	vector,"
u(	n)	is	the	input	at	time	n,	y(	n)	is	the	output	at	time	n;	A	is	an	(	M	x	M)	matrix,	B	is	an	(	M	x	1)	vector,
C	is	a	(1	x	M)	vector,	and	D	is	a	(1	x	1)	scalar.

One	can	always	obtain	a	state-variable	description	of	a	signal	flow	graph.

Example	6.2.	3rd-Order	IIR

y(	n)=–(	a	1	y(	n−1))−	a	2	y(	n−2)−	a	3	y(	n−3)+	b	0	x(	n)+	b	1	x(	n−1)+	b	2	x(	n−2)+	b	3	x(	n−3)



Figure	6.15.

Exercise	2.

Is	the	state-variable	description	of	a	filter	H(	z)	unique?

Exercise	3.

Does	the	state-variable	description	fully	describe	the	signal	flow	graph?

State-Variable	Transformation

Suppose	we	wish	to	define	a	new	set	of	state	variables,	related	to	the	old	set	by	a	linear



transformation:	q(	n)=	Tx(	n)	,	where	T	is	a	nonsingular	(	M	x	M)	matrix,	and	q(	n)	is	the	new	state
vector.	We	wish	the	overall	system	to	remain	the	same.	Note	that	x(	n)=	T-1q(	n)	,	and	thus

(x(	n+1)=	Ax(	n)+	Bu(	n)	⇒	T-1q(	n)=	AT-1q(	n)+	Bu(	n)	⇒	q(	n)=	TAT-1q(	n)+	TBu(	n))	(	y(	n)=	Cx(
n)+	Du(

This	defines	a	new	state	system	with	an	input-output	behavior	identical	to	the	old	system,	but	with

different	internal	memory	contents	(states)	and	state	matrices.

,

,

,

These	transformations	can	be	used	to	generate	a	wide	variety	of	alternative	stuctures	or

implementations	of	a	filter.

Transfer	Function	and	the	State-Variable	Description

Taking	the	z	transform	of	the	state	equations

Z[x(	n+1)]=	Z[	Ax(	n)+	Bu(	n)]	Z[	y(	n)]=	Z[	Cx(	n)+	Du(	n)]	⇓	zX(	z)=	AX(	z)+	BU(	z)	X(	z)	z



Y(	z)=	CX(	n)+	DU(	n)	((	zI−	A)X(	z)=	BU(	z)	⇒	X(	z)=(	zI−	A)-1	BU(	z))	so	()

and	thus	H(	z)=	C(	zI−	A)-1	B+	D	Note	that	since

,	this	transfer	function	is	an

M	th-order	rational	fraction	in	z.	The	denominator	polynomial	is	D(	z)=det(	zI−	A)	.	A	discrete-time
state	system	is	thus	stable	if	the	M	roots	of	det(	zI−	A)	(i.e.,	the	poles	of	the	digital	filter)	are	all	inside
the	unit	circle.

Consider	the	transformed	state	system	with

,

,

,

:

()

This	proves	that	state-variable	transformation	doesn't	change	the	transfer	function	of	the

underlying	system.	However,	it	can	provide	alternate	forms	that	are	less	sensitive	to	coefficient

quantization	or	easier	to	analyze,	understand,	or	implement.

State-variable	descriptions	of	systems	are	useful	because	they	provide	a	fairly	general	tool	for

analyzing	all	systems;	they	provide	a	more	detailed	description	of	a	signal	flow	graph	than	does

the	transfer	function	(although	not	a	full	description);	and	they	suggest	a	large	class	of	alternative

implementations.	They	are	even	more	useful	in	control	theory,	which	is	largely	based	on	state

descriptions	of	systems.

6.2.	Fixed-Point	Numbers



Fixed-Point	Number	Representation*

Fixed-point	arithmetic	is	generally	used	when	hardware	cost,	speed,	or	complexity	is	important.

Finite-precision	quantization	issues	usually	arise	in	fixed-point	systems,	so	we	concentrate	on

fixed-point	quantization	and	error	analysis	in	the	remainder	of	this	course.	For	basic	signal

processing	computations	such	as	digital	filters	and	FFTs,	the	magnitude	of	the	data,	the	internal

states,	and	the	output	can	usually	be	scaled	to	obtain	good	performance	with	a	fixed-point

implementation.

Two's-Complement	Integer	Representation

As	far	as	the	hardware	is	concerned,	fixed-point	number	systems	represent	data	as	B-bit	integers.

The	two's-complement	number	system	is	usually	used:

Figure	6.16.

The	most	significant	bit	is	known	at	the	sign	bit;	it	is	0	when	the	number	is	non-negative;	1	when

the	number	is	negative.

Fractional	Fixed-Point	Number	Representation

For	the	purposes	of	signal	processing,	we	often	regard	the	fixed-point	numbers	as	binary	fractions

between	[-1,	1)	,	by	implicitly	placing	a	decimal	point	after	the	sign	bit.



Figure	6.17.

or

This	interpretation	makes	it	clearer	how	to	implement	digital	filters	in	fixed-

point,	at	least	when	the	coefficients	have	a	magnitude	less	than	1.

Truncation	Error

Consider	the	multiplication	of	two	binary	fractions

Figure	6.18.

Note	that	full-precision	multiplication	almost	doubles	the	number	of	bits;	if	we	wish	to	return	the



product	to	a	B-bit	representation,	we	must	truncate	the	B−1	least	significant	bits.	However,	this

introduces	truncation	error	(also	known	as	quantization	error,	or	roundoff	error	if	the	number

is	rounded	to	the	nearest	B-bit	fractional	value	rather	than	truncated).	Note	that	this	occurs	after

multiplication.

Overflow	Error

Consider	the	addition	of	two	binary	fractions;

Figure	6.19.

Note	the	occurence	of	wraparound	overflow;	this	only	happens	with	addition.	Obviously,	it	can	be

a	bad	problem.

There	are	thus	two	types	of	fixed-point	error:	roundoff	error,	associated	with	data	quantization	and

multiplication,	and	overflow	error,	associated	with	data	quantization	and	additions.	In	fixed-point

systems,	one	must	strike	a	balance	between	these	two	error	sources;	by	scaling	down	the	data,	the

occurence	of	overflow	errors	is	reduced,	but	the	relative	size	of	the	roundoff	error	is	increased.

Since	multiplies	require	a	number	of	additions,	they	are	especially	expensive	in	terms	of

hardware	(with	a	complexity	proportional	to	BxBh	,	where	Bx	is	the	number	of	bits	in	the	data,

and	Bh	is	the	number	of	bits	in	the	filter	coefficients).	Designers	try	to	minimize	both	Bx	and

Bh	,	and	often	choose	Bx≠	Bh	!

Fixed-Point	Quantization*

The	fractional	B-bit	two's	complement	number	representation	evenly	distributes	2	B	quantization



levels	between	-1	and	1−2–((	B−1))	.	The	spacing	between	quantization	levels	is	then

Any	signal	value	falling	between	two	levels	is	assigned	to	one	of	the	two	levels.

XQ=	Q[	x]	is	our	notation	for	quantization.	e=	Q[	x]−	x	is	then	the	quantization	error.

One	method	of	quantization	is	rounding,	which	assigns	the	signal	value	to	the	nearest	level.	The

maximum	error	is	thus

.

(a)



(b)

Figure	6.20.

Another	common	scheme,	which	is	often	easier	to	implement	in	hardware,	is	truncation.

Q[	x]	assigns	x	to	the	next	lowest	level.

(a)

(b)

Figure	6.21.

The	worst-case	error	with	truncation	is	Δ=2–((	B−1))	,	which	is	twice	as	large	as	with	rounding.

Also,	the	error	is	always	negative,	so	on	average	it	may	have	a	non-zero	mean	(i.e.,	a	bias

component).

Overflow	is	the	other	problem.	There	are	two	common	types:	two's	complement	(or	wraparound)

overflow,	or	saturation	overflow.

<db:title>wraparound</db:title>

<db:title>saturation</db:title>

(a)



(b)

Figure	6.22.

Obviously,	overflow	errors	are	bad	because	they	are	typically	large;	two's	complement	(or

wraparound)	overflow	introduces	more	error	than	saturation,	but	is	easier	to	implement	in

hardware.	It	also	has	the	advantage	that	if	the	sum	of	several	numbers	is	between	[-1,	1)	,	the	final

answer	will	be	correct	even	if	intermediate	sums	overflow!	However,	wraparound	overflow	leaves

IIR	systems	susceptible	to	zero-input	large-scale	limit	cycles,	as	discussed	in	another	module.	As

usual,	there	are	many	tradeoffs	to	evaluate,	and	no	one	right	answer	for	all	applications.

6.3.	Quantization	Error	Analysis

Finite-Precision	Error	Analysis*

Fundamental	Assumptions	in	finite-precision	error	analysis

Quantization	is	a	highly	nonlinear	process	and	is	very	difficult	to	analyze	precisely.

Approximations	and	assumptions	are	made	to	make	analysis	tractable.

Assumption	#1

The	roundoff	or	truncation	errors	at	any	point	in	a	system	at	each	time	are	random,	stationary,

and	statistically	independent	(white	and	independent	of	all	other	quantizers	in	a	system).

That	is,	the	error	autocorrelation	function	is	r

2

e[	k]=	E[	ene	n	+	k	]=	σq	δ[	k]	.	Intuitively,	and

confirmed	experimentally	in	some	(but	not	all!)	cases,	one	expects	the	quantization	error	to	have	a

uniform	distribution	over	the	interval

for	rounding,	or	(–	Δ,	0]	for	truncation.



In	this	case,	rounding	has	zero	mean	and	variance	E[	Q[	xn]−	xn]=0

and	truncation

has	the	statistics

Please	note	that	the	independence	assumption	may	be	very	bad	(for	example,	when	quantizing	a

sinusoid	with	an	integer	period	N).	There	is	another	quantizing	scheme	called	dithering,	in	which

the	values	are	randomly	assigned	to	nearby	quantization	levels.	This	can	be	(and	often	is)

implemented	by	adding	a	small	(one-	or	two-bit)	random	input	to	the	signal	before	a	truncation	or

rounding	quantizer.

Figure	6.23.

This	is	used	extensively	in	practice.	Altough	the	overall	error	is	somewhat	higher,	it	is	spread

evenly	over	all	frequencies,	rather	than	being	concentrated	in	spectral	lines.	This	is	very	important

when	quantizing	sinusoidal	or	other	periodic	signals,	for	example.

Assumption	#2

Pretend	that	the	quantization	error	is	really	additive	Gaussian	noise	with	the	same	mean	and

variance	as	the	uniform	quantizer.	That	is,	model

(a)

<db:title>as</db:title>

(b)



Figure	6.24.

This	model	is	a	linear	system,	which	our	standard	theory	can	handle	easily.	We	model	the	noise

as	Gaussian	because	it	remains	Gaussian	after	passing	through	filters,	so	analysis	in	a	system

context	is	tractable.

Summary	of	Useful	Statistical	Facts

correlation	function:	(	rx[	k]	≐	E[	xnx	n	+	k	])

power	spectral	density:	(	Sx(	w)	≐	DTFT[	rx[	n]])

Note

(	r	xy[	k]	≐	E[	x*[	n]	y[	n+	k]])

cross-spectral	density:	S	xy(	w)=DTFT[	r	xy[	n]]

For	y=	h*	x	:	S	yx(	w)=	H(	w)	Sx(	w)	S	yy(	w)=(|	H(	w)|)2	Sx(	w)	Note	that	the	output	noise	level	after
filtering	a	noise	sequence	is

so

postfiltering	quantization	noise	alters	the	noise	power	spectrum	and	may	change	its	variance!

For	x	1	,	x	2	statistically	independent	r	x

[	k]+	r	[	k]	S

(	w)+	S	(	w)

1	+	x	2	[	k]=	rx	1

x	2



x	1	+	x	2	(	w)=	Sx	1

x	2

For	independent	random	variables	σ

2

2

2

x

=	σ

+	σ

1	+	x	2

x	1

x	2

Input	Quantization	Noise	Analysis*

All	practical	analog-to-digital	converters	(A/D)	must	quantize	the	input	data.	This	can	be	modeled

as	an	ideal	sampler	followed	by	a	B-bit	quantizer.

Figure	6.25.

The	signal-to-noise	ratio	(SNR)	of	an	A/D	is

()

where	Px	is	the	power	in	the	signal	and	Pn	is	the	power	of	the	quantization	noise,	which	equals	its

variance	if	it	has	a	zero	mean.	The	SNR	increases	by	6dB	with	each	additional	bit.



Quantization	Error	in	FIR	Filters*

In	digital	filters,	both	the	data	at	various	places	in	the	filter,	which	are	continually	varying,	and

the	coefficients,	which	are	fixed,	must	be	quantized.	The	effects	of	quantization	on	data	and

coefficients	are	quite	different,	so	they	are	analyzed	separately.

Data	Quantization

Typically,	the	input	and	output	in	a	digital	filter	are	quantized	by	the	analog-to-digital	and	digital-

to-analog	converters,	respectively.	Quantization	also	occurs	at	various	points	in	a	filter	structure,

usually	after	a	multiply,	since	multiplies	increase	the	number	of	bits.

Direct-form	Structures

There	are	two	common	possibilities	for	quantization	in	a	direct-form	FIR	filter	structure:	after

each	multiply,	or	only	once	at	the	end.

(a)	Single-precision	accumulate;	total	variance

(b)	Double-precision	accumulate;	variance

Figure	6.26.

In	the	latter	structure,	a	double-length	accumulator	adds	all	2	B−1	bits	of	each	product	into	the

accumulating	sum,	and	truncates	only	at	the	end.	Obviously,	this	is	much	preferred,	and	should

always	be	used	wherever	possible.	All	DSP	microprocessors	and	most	general-pupose	computers

support	double-precision	accumulation.



Transpose-form

Similarly,	the	transpose-form	FIR	filter	structure	presents	two	common	options	for	quantization:

after	each	multiply,	or	once	at	the	end.

(a)	Quantize	at	each	stage	before	storing	intermediate	sum.	Output	variance

<db:title>or</db:title>

(b)	Store	double-precision	partial	sums.	Costs	more	memory,	but	variance

Figure	6.27.

The	transpose	form	is	not	as	convenient	in	terms	of	supporting	double-precision	accumulation,

which	is	a	significant	disadvantage	of	this	structure.

Coefficient	Quantization

Since	a	quantized	coefficient	is	fixed	for	all	time,	we	treat	it	differently	than	data	quantization.

The	fundamental	question	is:	how	much	does	the	quantization	affect	the	frequency	response	of	the

filter?

The	quantized	filter	frequency	response	is



Assuming	the

quantization	model	is	correct,	He(	w)	should	be	fairly	random	and	white,	with	the	error	spread

fairly	equally	over	all	frequencies	w∈[–	π,	π)	;	however,	the	randomness	of	this	error	destroys	any

equiripple	property	or	any	infinite-precision	optimality	of	a	filter.

Exercise	4.

What	quantization	scheme	minimizes	the	L	2	quantization	error	in	frequency	(minimizes

)?	On	average,	how	big	is	this	error?

Ideally,	if	one	knows	the	coefficients	are	to	be	quantized	to	B	bits,	one	should	incorporate	this

directly	into	the	filter	design	problem,	and	find	the	M	B-bit	binary	fractional	coefficients

minimizing	the	maximum	deviation	(	L∞	error).	This	can	be	done,	but	it	is	an	integer	program,

which	is	known	to	be	np-hard	(i.e.,	requires	almost	a	brute-force	search).	This	is	so	expensive

computationally	that	it's	rarely	done.	There	are	some	sub-optimal	methods	that	are	much	more

efficient	and	usually	produce	pretty	good	results.

Data	Quantization	in	IIR	Filters*

Finite-precision	effects	are	much	more	of	a	concern	with	IIR	filters	than	with	FIR	filters,	since	the

effects	are	more	difficult	to	analyze	and	minimize,	coefficient	quantization	errors	can	cause	the

filters	to	become	unstable,	and	disastrous	things	like	large-scale	limit	cycles	can	occur.

Roundoff	noise	analysis	in	IIR	filters

Suppose	there	are	several	quantization	points	in	an	IIR	filter	structure.	By	our	simplifying



assumptions	about	quantization	error	and	Parseval's	theorem,	the	quantization	noise	variance

σ	2

y,i	at	the	output	of	the	filter	from	the	i	th	quantizer	is

()

where	σ	2

n	is	the	variance	of	the	quantization	error	at	the	i	th	quantizer,	S	(	w)	is	the	power	spectral

i

ni

density	of	that	quantization	error,	and	Hi(	w)	is	the	transfer	function	from	the	i	th	quantizer	to	the

output	point.	Thus	for	P	independent	quantizers	in	the	structure,	the	total	quantization	noise



variance	is

Note	that	in	general,	each	Hi(	w)	,	and	thus	the	variance	at	the

output	due	to	each	quantizer,	is	different;	for	example,	the	system	as	seen	by	a	quantizer	at	the

input	to	the	first	delay	state	in	the	Direct-Form	II	IIR	filter	structure	to	the	output,	call	it	n	4	,	is

Figure	6.28.

with	a	transfer	function

which	can	be	evaluated	at	z=	ⅇⅈw	to	obtain	the	frequency



response.

A	general	approach	to	find	Hi(	w)	is	to	write	state	equations	for	the	equivalent	structure	as	seen	by

ni	,	and	to	determine	the	transfer	function	according	to	H(	z)=	C(	zI−	A)-1	B+	d	.

Figure	6.29.

Exercise	5.

The	above	figure	illustrates	the	quantization	points	in	a	typical	implementation	of	a	Direct-Form

The	above	figure	illustrates	the	quantization	points	in	a	typical	implementation	of	a	Direct-Form

II	IIR	second-order	section.	What	is	the	total	variance	of	the	output	error	due	to	all	of	the

quantizers	in	the	system?

By	making	the	assumption	that	each	Qi	represents	a	noise	source	that	is	white,	independent	of	the



other	sources,	and	additive,

Figure	6.30.

the	variance	at	the	output	is	the	sum	of	the	variances	at	the	output	due	to	each	noise	source:

The	variance	due	to	each	noise	source	at	the	output	can	be	determined	from

;	note	that	S

2

n	(	w)=	σ

by	our	assumptions,	and	H

i

ni

i(	w)	is	the	transfer	function

from	the	noise	source	to	the	output.

IIR	Coefficient	Quantization	Analysis*

Coefficient	quantization	is	an	important	concern	with	IIR	filters,	since	straigthforward

quantization	often	yields	poor	results,	and	because	quantization	can	produce	unstable	filters.

Sensitivity	analysis

The	performance	and	stability	of	an	IIR	filter	depends	on	the	pole	locations,	so	it	is	important	to

know	how	quantization	of	the	filter	coefficients	ak	affects	the	pole	locations	pj	.	The	denominator

polynomial	is

We	wish	to	know

,	which,	for	small	deviations,

will	tell	us	that	a	δ	change	in	ak	yields	an

change	in	the	pole	location.

is	the

sensitivity	of	the	pole	location	to	quantization	of	ak	.	We	can	find



using	the	chain	rule.

⇓

which	is

()

Note	that	as	the	poles	get	closer	together,	the	sensitivity	increases	greatly.	So	as	the	filter	order

increases	and	more	poles	get	stuffed	closer	together	inside	the	unit	circle,	the	error	introduced	by

coefficient	quantization	in	the	pole	locations	grows	rapidly.

How	can	we	reduce	this	high	sensitivity	to	IIR	filter	coefficient	quantization?

Solution

Cascade	or	parallel	form	implementations!	The	numerator	and	denominator	polynomials	can	be
factored	off-line	at	very	high	precision	and	grouped	into	second-order	sections,	which	are	then

quantized	section	by	section.	The	sensitivity	of	the	quantization	is	thus	that	of	second-order,

rather	than	N-th	order,	polynomials.	This	yields	major	improvements	in	the	frequency	response	of

the	overall	filter,	and	is	almost	always	done	in	practice.

Note	that	the	numerator	polynomial	faces	the	same	sensitivity	issues;	the	cascade	form	also

improves	the	sensitivity	of	the	zeros,	because	they	are	also	factored	into	second-order	terms.

However,	in	the	parallel	form,	the	zeros	are	globally	distributed	across	the	sections,	so	they	suffer

from	quantization	of	all	the	blocks.	Thus	the	cascade	form	preserves	zero	locations	much	better

than	the	parallel	form,	which	typically	means	that	the	stopband	behavior	is	better	in	the	cascade

form,	so	it	is	most	often	used	in	practice.

Note	on	FIR	Filters



On	the	basis	of	the	preceding	analysis,	it	would	seem	important	to	use	cascade	structures	in

FIR	filter	implementations.	However,	most	FIR	filters	are	linear-phase	and	thus	symmetric	or

anti-symmetric.	As	long	as	the	quantization	is	implemented	such	that	the	filter	coefficients

retain	symmetry,	the	filter	retains	linear	phase.	Furthermore,	since	all	zeros	off	the	unit	circle

must	appear	in	groups	of	four	for	symmetric	linear-phase	filters,	zero	pairs	can	leave	the	unit

circle	only	by	joining	with	another	pair.	This	requires	relatively	severe	quantizations	(enough

to	completely	remove	or	change	the	sign	of	a	ripple	in	the	amplitude	response).	This

"reluctance"	of	pole	pairs	to	leave	the	unit	circle	tends	to	keep	quantization	from	damaging

the	frequency	response	as	much	as	might	be	expected,	enough	so	that	cascade	structures	are

rarely	used	for	FIR	filters.



Exercise	6.

What	is	the	worst-case	pole	pair	in	an	IIR	digital	filter?

The	pole	pair	closest	to	the	real	axis	in	the	z-plane,	since	the	complex-conjugate	poles	will	be

closest	together	and	thus	have	the	highest	sensitivity	to	quantization.

Quantized	Pole	Locations

In	a	direct-form	or	transpose-form	implementation	of	a	second-order	section,	the	filter	coefficients	are
quantized	versions	of	the	polynomial	coefficients.

p=	rⅇⅈθ	D(	z)=	z	2−2	r	cos(	θ)+	r	2	So	a	1=–(2	r	cos(	θ))	a	2=	r	2	Thus	the	quantization	of	a	1	and	a	2	to
B	bits	restricts	the	radius	r	to

,	and	a	1=–(2Re(	p))=	kΔB	The	following	figure

shows	all	stable	pole	locations	after	four-bit	two's-complement	quantization.



Figure	6.31.

Note	the	nonuniform	distribution	of	possible	pole	locations.	This	might	be	good	for	poles	near

r=1	,

,	but	not	so	good	for	poles	near	the	origin	or	the	Nyquist	frequency.

In	the	"normal-form"	structures,	a	state-variable	based	realization,	the	poles	are	uniformly	spaced.

Figure	6.32.

This	can	only	be	accomplished	if	the	coefficients	to	be	quantized	equal	the	real	and	imaginary

parts	of	the	pole	location;	that	is,	α	1=	r	cos(	θ)=Re(	r)	α	2=	r	sin(	θ)=Im(	p)	This	is	the	case	for	a	2nd-



order	system	with	the	state	matrix

:	The	denominator	polynomial	is

()

Given	any	second-order	filter	coefficient	set,	we	can	write	it	as	a	state-space	system,	find	a

transformation	matrix	T	such	that

is	in	normal	form,	and	then	implement	the	second-

order	section	using	a	structure	corresponding	to	the	state	equations.

The	normal	form	has	a	number	of	other	advantages;	both	eigenvalues	are	equal,	so	it	minimizes

the	norm	of	Ax	,	which	makes	overflow	less	likely,	and	it	minimizes	the	output	variance	due	to

quantization	of	the	state	values.	It	is	sometimes	used	when	minimization	of	finite-precision

effects	is	critical.

Exercise	7.

What	is	the	disadvantage	of	the	normal	form?

It	requires	more	computation.	The	general	state-variable	equation	requires	nine	multiplies,

rather	than	the	five	used	by	the	Direct-Form	II	or	Transpose-Form	structures.

6.4.	Overflow	Problems	and	Solutions

Limit	Cycles*

Large-scale	limit	cycles

When	overflow	occurs,	even	otherwise	stable	filters	may	get	stuck	in	a	large-scale	limit	cycle,

which	is	a	short-period,	almost	full-scale	persistent	filter	output	caused	by	overflow.



Example	6.3.

Consider	the	second-order	system

Figure	6.33.

with	zero	input	and	initial	state	values	z	0[0]=0.8	,	z	1[0]=-0.8	.	Note	y[	n]=	z	0[	n+1]	.

The	filter	is	obviously	stable,	since	the	magnitude	of	the	poles	is

,	which	is	well	inside

the	unit	circle.	However,	with	wraparound	overflow,	note	that

,	and



that

,	so

even	with	zero	input.

Clearly,	such	behavior	is	intolerable	and	must	be	prevented.	Saturation	arithmetic	has	been	proved

to	prevent	zero-input	limit	cycles,	which	is	one	reason	why	all	DSP	microprocessors	support	this

feature.	In	many	applications,	this	is	considered	sufficient	protection.	Scaling	to	prevent	overflow

is	another	solution,	if	as	well	the	inital	state	values	are	never	initialized	to	limit-cycle-producing

values.	The	normal-form	structure	also	reduces	the	chance	of	overflow.

Small-scale	limit	cycles

Small-scale	limit	cycles	are	caused	by	quantization.	Consider	the	system

Figure	6.34.

Note	that	when

,	rounding	will	quantize	the	output	to	the	current	level	(with	zero	input),

so	the	output	will	remain	at	this	level	forever.	Note	that	the	maximum	amplitude	of	this	"small-

scale	limit	cycle"	is	achieved	when

In	a	higher-order	system,	the

small-scale	limit	cycles	are	oscillatory	in	nature.	Any	quantization	scheme	that	never	increases



the	magnitude	of	any	quantized	value	prevents	small-scale	limit	cycles.

Two's-complement	truncation	does	not	do	this;	it	increases	the	magnitude	of	negative

numbers.

However,	this	introduces	greater	error	and	bias.	Since	the	level	of	the	limit	cycles	is	proportional

to	ΔB	,	they	can	be	reduced	by	increasing	the	number	of	bits.	Poles	close	to	the	unit	circle	increase

the	magnitude	and	likelihood	of	small-scale	limit	cycles.

Scaling*

Overflow	is	clearly	a	serious	problem,	since	the	errors	it	introduces	are	very	large.	As	we	shall

see,	it	is	also	responsible	for	large-scale	limit	cycles,	which	cannot	be	tolerated.	One	way	to

prevent	overflow,	or	to	render	it	acceptably	unlikely,	is	to	scale	the	input	to	a	filter	such	that

overflow	cannot	(or	is	sufficiently	unlikely	to)	occur.

Figure	6.35.

In	a	fixed-point	system,	the	range	of	the	input	signal	is	limited	by	the	fractional	fixed-point

number	representation	to	|	x[	n]|≤1	.	If	we	scale	the	input	by	multiplying	it	by	a	value	β,	0<	β<1	,	then	|
βx[	n]|≤	β	.

Another	option	is	to	incorporate	the	scaling	directly	into	the	filter	coefficients.

Figure	6.36.

FIR	Filter	Scaling

What	value	of	β	is	required	so	that	the	output	of	an	FIR	filter	cannot	overflow	(	|	y(	n)|≤1	,

|	x(	n)|≤1	)?

⇓

Alternatively,	we	can

incorporate	the	scaling	directly	into	the	filter,	and	require	that

to	prevent	overflow.



IIR	Filter	Scaling

To	prevent	the	output	from	overflowing	in	an	IIR	filter,	the	condition	above	still	holds:	(	M=∞	)

so	an	initial	scaling	factor

can	be	used,	or	the	filter	itself	can	be	scaled.

However,	it	is	also	necessary	to	prevent	the	states	from	overflowing,	and	to	prevent	overflow	at

any	point	in	the	signal	flow	graph	where	the	arithmetic	hardware	would	thereby	produce	errors.	To

prevent	the	states	from	overflowing,	we	determine	the	transfer	function	from	the	input	to	all	states

i,	and	scale	the	filter	such	that

Although	this	method	of	scaling	guarantees	no	overflows,	it	is	often	too	conservative.	Note	that	a

worst-case	signal	is	x(	n)=sign(	h(–	n))	;	this	input	may	be	extremely	unlikely.	In	the	relatively

common	situation	in	which	the	input	is	expected	to	be	mainly	a	single-frequency	sinusoid	of

unknown	frequency	and	amplitude	less	than	1,	a	scaling	condition	of	|	H(	w)|≤1	is	sufficient	to

guarantee	no	overflow.	This	scaling	condition	is	often	used.	If	there	are	several	potential	overflow

locations	i	in	the	digital	filter	structure,	the	scaling	conditions	are	|	Hi(	w)|≤1	where	Hi(	w)	is	the
frequency	response	from	the	input	to	location	i	in	the	filter.

Even	this	condition	may	be	excessively	conservative,	for	example	if	the	input	is	more-or-less

random,	or	if	occasional	overflow	can	be	tolerated.	In	practice,	experimentation	and	simulation

are	often	the	best	ways	to	optimize	the	scaling	factors	in	a	given	application.

For	filters	implemented	in	the	cascade	form,	rather	than	scaling	for	the	entire	filter	at	the

beginning,	(which	introduces	lots	of	quantization	of	the	input)	the	filter	is	usually	scaled	so	that

each	stage	is	just	prevented	from	overflowing.	This	is	best	in	terms	of	reducing	the	quantization

noise.	The	scaling	factors	are	incorporated	either	into	the	previous	or	the	next	stage,	whichever	is

most	convenient.



Some	heurisitc	rules	for	grouping	poles	and	zeros	in	a	cascade	implementation	are:

1.	Order	the	poles	in	terms	of	decreasing	radius.	Take	the	pole	pair	closest	to	the	unit	circle	and

group	it	with	the	zero	pair	closest	to	that	pole	pair	(to	minimize	the	gain	in	that	section).	Keep

doing	this	with	all	remaining	poles	and	zeros.

2.	Order	the	section	with	those	with	highest	gain	(	argmax|	Hi(	w)|	)	in	the	middle,	and	those	with

lower	gain	on	the	ends.

Leland	B.	Jackson	[link]	has	an	excellent	intuitive	discussion	of	finite-precision	problems	in	digital
filters.	The	book	by	Roberts	and	Mullis	[link]	is	one	of	the	most	thorough	in	terms	of	detail.

References

1.	Leland	B.	Jackson.	(1989).	Digital	Filters	and	Signal	Processing.	(2nd	Edition).	Kluwer

Academic	Publishers.

2.	Richard	A.	Roberts	and	Clifford	T.	Mullis.	(1987).	Digital	Signal	Processing.	Prentice	Hall.

Glossary

Definition:	State

the	minimum	additional	information	at	time	simplemath	mathml-miitalicsn	n,	which,	along	with
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