

Programming	with	Robots

Albert	W.	Schueller

Whitman	College

October	12,	2011

2

This	work	is	licensed	under	the	Creative	Commons	Attribution-NonCommercial-ShareAlike

License.	To	view	a	copy	of	this	license,	visit	http://creativecommons.org/licenses/

by-nc-sa/3.0/	or	send	a	letter	to	Creative	Commons,	543	Howard	Street,	5th	Floor,	San	Francisco,
California,	94105,	USA.	If	you	distribute	this	work	or	a	derivative,	include	the

history	of	the	document.	This	text	was	initially	written	by	Albert	Schueller	and	supported

by	a	grant	from	Whitman	College,	Walla	Walla,	WA	USA.

Thanks	to	Patricia	“Alex”	Robinson	for	reading	this	over	and	helping	me	to	keep	it	clean.

Chapter	1

Introduction

1.1

External	References

Throughout	these	notes	the	reader	is	directed	to	external	references.	Unless	otherwise	spec-

ified,	these	external	references	were	all	created	by	the	developers	of	the	RobotC	software	at

Carnegie-Mellon’s	Robotics	Laboratory.	The	materials	are	distributed	with	the	software	and

are	copyrighted	and	unedited.	Because	RobotC	is	still	actively	being	developed,	there	are

cases	in	which	the	documentation	does	not	match	the	RobotC	behavior.	The	references	are

stored	locally	to	improve	access	to	the	materials	and	to	ensure	that	they	match	the	version

of	the	software	that	we	are	using.

1.2

Why	Robots?

http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/

Why	learn	the	basics	of	programming	using	robots	instead	of	more	traditional	method?	For

the	last	50	years	mainstream	computer	science	has	centered	on	the	manipulation	of	abstract

digital	information.	Programming	for	devices	that	interact	with	the	physical	world	has

always	been	an	area	of	specialization	for	individuals	that	have	already	run	the	gauntlet	of

abstract	information-based	computer	science.

In	recent	years,	we	have	seen	a	proliferation	of	processing	devices	that	collect	and	manage

information	from	their	real-time	environments	via	some	physical	interface	component–among

them,	anti-lock	brakes,	Mars	rovers,	tele-surgery,	artificial	limbs,	and	even	iPods.	As	these

devices	become	ubiquitous,	a	liberally	educated	person	should	have	some	familiarity	with

the	ways	in	which	such	devices	work–their	capabilities	and	limitations.

3

4

CHAPTER	1.	INTRODUCTION

Chapter	2

Hardware	and	Software

Much	of	computer	science	lies	at	the	interface	between	hardware	and	software.	Hardware

is	electronic	equipment	that	is	controlled	by	a	set	of	abstract	instructions	called	software.

Both	categories	have	a	variety	of	subcategories.

2.1

Hardware

Computer	hardware	is	typically	electronic	equipment	that	responds	in	well-defined	ways	to

specific	commands.	Over	the	years,	a	collection	of	useful	kinds	of	hardware	has	developed:

1.	Central	processing	unit	(CPU)	-	a	specialized	integrated	circuit	that	accepts	certain

electronic	inputs	and,	through	a	series	of	logic	circuits,	produces	measurable	compu-

tational	outputs.

2.	Random	access	memory	(RAM)	-	stores	information	in	integrated	circuits	that

reset	if	power	is	lost.	The	CPU	has	fast	access	to	this	information	and	uses	it	for

“short-term”	memory	during	computation.

3.	Hard	disk	drive	(HDD)	-	stores	information	on	magnetized	platters	that	spin	rapidly.

Information	is	stored	and	retrieved	by	a	collection	of	arms	that	swing	back	and	forth

across	the	surfaces	of	the	platters	touching	down	periodically	to	read	from	or	write

to	the	platters.	These	devices	fall	into	the	category	of	“secondary	storage”	because

the	CPU	does	not	have	direct	access	to	the	information.	Typically,	information	from

the	HDD	must	be	loaded	into	RAM	before	being	processed	by	the	CPU.	Reading	and

writing	information	from	HDD’s	is	slower	than	RAM.

4.	Other	kinds	of	secondary	storage	-	optical	disks	like	CD’s	or	DVD’s	where	light

(lasers)	are	used	to	read	information	from	disks;	flash	memory	where	information	is

stored	in	integrated	circuits	that,	unlike	RAM,	do	not	reset	if	power	is	lost;	all	of	these

are	slower	than	HDD’s	or	RAM.

5.	Video	card	-	is	a	specialized	collection	of	CPU’s	and	RAM	tailored	for	rendering

images	to	a	video	display.

5

6

CHAPTER	2.	HARDWARE	AND	SOFTWARE

6.	Motherboard	-	a	collection	of	interconnected	slots	that	integrates	and	facilitates	the

passing	of	information	between	other	standardized	pieces	of	hardware.	The	channels

of	communication	between	the	CPU	and	the	RAM	lie	in	the	motherboard.	The	rate

at	which	information	can	travel	between	different	hardware	elements	is	not	only	deter-

mined	by	the	hardware	elements	themselves,	but	by	the	speed	of	the	interconnections

provided	by	the	motherboard.

7.	Interfaces	-	include	the	equipment	humans	use	to	receive	information	from	or	pro-

vide	information	to	a	computing	device.	For	example,	we	receive	information	through

the	video	display,	printer,	and	the	sound	card.	We	provide	information	through	the

keyboard,	mouse,	microphone,	or	touchscreen.

In	robotics,	some	of	these	terms	take	on	expanded	meanings.

The	most

significant	being	the	definition	of	interface.	Robots	are	designed	to	interface

with	some	aspect	of	the	physical	world	other	than	humans	(motors,	sensors).

2.2

Software

Software	is	a	collection	of	abstract	(intangible)	information	that	represents	instructions	for

a	particular	collection	of	hardware	to	accomplish	a	specific	task.	Writing	such	instructions

relies	on	knowing	the	capabilities	of	the	hardware,	the	specific	commands	necessary	to	elicit

those	capabilities,	and	a	method	of	delivering	those	commands	to	the	hardware.

For	example,	we	know	that	one	of	a	HDD’s	capabilities	is	to	store	information.	If	we

wish	to	write	a	set	of	instructions	to	store	information,	we	must	learn	the	specific	commands

required	to	spin	up	the	platters,	locate	an	empty	place	to	write	the	information	to	be	stored,

move	the	read/write	arms	to	the	correct	location,	lower	the	arm	to	touch	the	platter	etc.

Finally,	we	must	convey	our	instructions	to	the	HDD.

Generally,	software	instructions	may	be	written	at	three	different	levels:

1.	Machine	language	-	not	human	readable	and	matches	exactly	what	the	CPU	expects

in	order	to	elicit	a	particular	capability–think	0’s	and	1’s.

2.	Assembly	language	-	human	readable	representations	of	CPU	instructions.	While

assembly	language	is	human	readable,	its	command	set,	like	the	CPU’s,	is	primitive.

Even	the	simplest	instructions,	like	those	required	to	multiply	two	numbers,	can	be

quite	tedious	to	write.

Most	modern	CPU’s	and/or	motherboards	have	interpreters	that	translate	assembly

language	to	machine	language	before	feeding	instructions	to	the	CPU.

3.	High-level	language	-	human	readable	and	usually	has	a	much	richer	set	of	com-

mands	available	(though	those	commands	necessarily	can	only	be	combinations	of

assembly	commands).	Translating	the	high-level	language	to	machine	language	is	too

complicated	for	the	CPU’s	built	in	interpreter	so	a	separate	piece	of	software	called	a

compiler	is	required.	A	compiler	translates	the	high-level	instructions	to	assembly	or

machine	instructions	which	are	then	fed	to	the	CPU	for	execution.

Examples	of	high-level	languages	are:	C,	C++,	Fortran,	or	RobotC	to	name	a	few.

2.2.	SOFTWARE

7

A	robot	is	a	programmable	device	that	can	both	sense	and	change	aspects	of	its	envi-

ronment.

8

CHAPTER	2.	HARDWARE	AND	SOFTWARE

2.3

Exercises

1.	Who	coined	the	term	“robot”?	Give	a	little	history.

2.	What	are	some	more	formal	definitions	of	robot?

3.	Who	manufactures	and	what	model	is	the	CPU	in	a	Mindstorm	NXT	robot?

4.	Who	manufactures	and	what	model	is	the	CPU	in	an	iPod?

5.	What	is	a	bit?	A	byte?	A	kilobyte?	A	megabyte?	A	gigabyte?

6.	What	kind	of	hardware	is	a	scanner?

7.	What	kind	of	hardware	is	an	ethernet	card	(used	for	connecting	to	the	Internet)?

Chapter	3

The	Display

The	NXT	“brick”	has	a	display	that	is	100	pixels	wide	and	64	pixels	high.	Unlike	the	latest

and	greatest	game	consoles,	the	display	is	monochrome,	meaning	that	a	particular	pixel	is

either	on	or	off.	While	simple,	the	display	provides	an	invaluable	tool	for	communicating

information	from	within	a	running	program.

(0,	63)

(99,	63)

pixel	at	(49,	31)

+yPos

(0,	0)

+xPos

(99,	0)

Figure	3.1:	NXT	display	screen	coordinate	system.

3.1

Hello	World!

An	old	tradition	in	computer	science	is	the	“Hello	World!”	program	(HWP).	The	HWP	is

a	simple	program	whose	primary	purpose	is	to	introduce	the	programmer	to	the	details	of

writing,	saving,	compiling,	and	running	a	program.	It	helps	the	programmer	learn	the	ins

9

10

CHAPTER	3.	THE	DISPLAY

and	outs	of	the	system	they	will	be	using.	Our	HWP	will	print	the	words	“Hello	World!”	to

the	NXT	display.

✞

☎

//	Displays	the	words	"	Hello	World	!"	on	the	NXT

//	display	for	5	seconds	and	exits	.

task	main	()	{

n	x	t	D	i	s	p	l	a	y	S	t	r	i	n	g	(4	,	"	H	e	l	l	o	W	o	r	l	d	!	");

w	a	i	t	1	M	s	e	c	(5	0	0	0)	;

}

✝

✆

Listing	3.1:	A	simple	“Hello	World!”	program	for	the	NXT.

To	execute	these	instructions	on	the	NXT,	run	the	RobotC	program.	Type	the	text

exactly	as	it	appears	in	Listing	3.1	into	the	editor	window.	Save	your	program	under	the	name
“HelloWorld”.	Turn	on	the	NXT	brick	and	connect	it	to	the	USB	port	of	the	computer.	Under	the	Robot
menu,	choose	Download	Program.	Behind	the	scenes,	the	HWP	is

compiled	and	transferred	to	the	NXT.	Now,	on	the	NXT,	go	to	My	Files	→	Software	Files

→	HelloWorld	→	HelloWorld	Run.	If	successful,	the	words	“Hello	World!”	will	appear	on

the	display.

3.2

Program	Dissection

Nearly	every	character	in	the	HWP	has	meaning.	The	arrangement	of	the	characters	is

important	so	that	the	compiler	can	translate	the	program	into	machine	language.	The	rules

of	arrangement	are	called	the	syntax.	If	the	syntax	rules	are	violated,	the	compilation	and

download	step	will	fail	and	the	compiler	will	try	to	suggest	ways	to	correct	the	mistake.

To	start,	we	have	task	main(),	signifying	that	this	is	the	first	section	of	instructions	to

be	executed.	A	program	may	have	up	to	10	tasks,	but	the	main	task	always	starts	first.	The

open	and	close	curly	braces	({,	})	enclose	a	block	of	instructions.	Blocks	will	be	discussed

later	in	the	context	of	program	variables.

The	first	instruction	is	a	call	to	the	function	nxtDisplayString().	Enclosed	in	the

parentheses	are	the	arguments	to	the	function.	The	first	argument,	4,	specifies	the	line	on

which	to	place	the	words	(there	are	8	lines	labeled	0	through	7	from	top	to	bottom).	The

second	argument,	"Hello	World!",	enclosed	in	double	quotes,	is	the	collection	of	characters,

also	known	as	a	string,	to	be	displayed.	The	instruction	is	delimited	by	a	semi-colon,	;.

The	delimiter	makes	it	easy	for	the	compiler	to	determine	where	one	instruction	ends	and

the	next	one	begins.	All	instructions	must	end	with	a	semi-colon.

The	second	instruction	is	a	call	to	the	wait1Msec()	function.	This	causes	the	program	to

pause	by	the	number	of	milliseconds	(1	millisecond	=	1/1000th	of	a	second)	specified	in	its

argument	before	proceeding	to	the	next	instruction.	In	this	case,	the	program	pauses	5,000

milliseconds	(or	5	seconds)	before	proceeding.	If	this	pause	is	not	included,	the	program	will

exit	as	soon	as	the	string	is	displayed	and	it	will	seem	as	if	the	program	does	nothing	at	all.

The	two	lines	at	the	top	of	Listing	3.1	are	comments	and	are	ignored	by	the	compiler.

Comments	are	useful	in	large	programs	to	remind	us	what	is	going	on	in	a	program	or	in	a

3.3.	BEYOND	WORDS

11

particular	section	of	the	program.	The	characters	//	cause	any	characters	that	follow	to	the

end	of	the	line	to	be	ignored	by	the	compiler.	Additional	information	about	comments	in

RobotC	is	available	here1.

3.3

Beyond	Words

There	are	a	number	of	other	objects,	other	than	strings,	that	can	easily	be	rendered	on	the

display–ellipses,	rectangles,	lines,	and	circles.	A	summary	of	all	of	the	display	commands	is

available	in	the	RobotC	On-line	Support	on	the	left	side-bar	under	the	NXT	Functions	→

http://www.robotc.net/support/nxt/MindstormsWebHelp/index.htm

Display	section.

An	important	step	in	learning	to	use	these	commands	is	to	understand	the	display’s

coordinate	system.	As	mentioned	earlier,	the	screen	is	100	pixels	wide	and	64	pixels	high.

Each	pixel	has	a	unique	position	given	by	the	ordered	pair	(xPos,yPos).	The	origin	is	located

at	the	lower-left	corner	of	the	screen	and	has	coordinates	(0,0).	The	xPos	coordinate	moves

the	location	left	and	right	and	ranges	from	0	to	99.	The	yPos	coordinate	moves	the	location

up	and	down	and	ranges	from	0	to	63.	Coordinates	that	are	outside	of	this	range	are	still

recognized,	but	only	the	pieces	of	a	particular	object	that	land	inside	the	display	range	will

be	visible.

The	program	in	Listing	3.2	draws	a	filled	ellipse.	After	a	second,	it	clears	out	a	rectangle	from	within
the	ellipse	and	displays	the	string	"Boo!".	After	another	second,	the	program

exits.

✞

☎

//	A	more	advanced	display	program	.

task	main	()	{

n	x	t	F	i	l	l	E	l	l	i	p	s	e	(0	,63	,99	,0);

w	a	i	t	1	M	s	e	c	(1	0	0	0)	;

n	x	t	D	i	s	p	l	a	y	B	i	g	S	t	r	i	n	g	A	t	(29	,41	,	"	Boo	!	");

w	a	i	t	1	M	s	e	c	(1	0	0	0)	;

}

✝

✆

Listing	3.2:	A	(slightly)	more	advanced	demonstration	of	the	display	instructions.

1http://carrot.whitman.edu/Robots/PDF/Comments.pdf

12

http://carrot.whitman.edu/Robots/PDF/Comments.pdf

CHAPTER	3.	THE	DISPLAY

3.4

Exercises

1.	What	are	the	coordinates	of	the	corners	of	the	display?	What	are	the	coordinates	of

the	center	of	the	display?

2.	What	command	will	render	a	diagonal	line	across	the	display	going	from	the	upper-left

corner	to	the	lower-right	corner?

3.	What	would	the	arguments	to	the	nxtDrawEllipse()	function	look	like	if	you	were	to

use	it	to	render	a	circle	of	radius	5	centered	at	pixel	(15,30)?

4.	What	is	the	largest	ellipse	that	can	be	rendered	in	the	display	(give	the	command	to

render	it)?

5.	Write	a	program	that	draws	the	largest	possible	rectangle	on	the	display	and,	moving

inward	two	pixels,	draws	a	second	rectangle	inside.

6.	Write	a	program	that	displays	the	5	Olympic	rings	centered	in	the	screen.	This	may

require	some	scratch	paper	and	some	hand	sketching	to	figure	out	the	correct	positions

of	the	circles.	(Diagram	#2	on	this	page	is	useful.)	7.	Write	a	program	that	displays	the	string	"Hello
World”!	on	line	0	for	1	second,	line

1	for	1	second,	etc,	up	to	line	7.

8.	Write	a	program	that	will	display	a	figure	similar	to

on	the	NXT	display	screen.	(Hint:	Use	the	nxtDrawLine()	function	a	few	times.)

9.	By	including	pauses	between	the	rendering	of	each	line,	a	kind	of	animation	can	be

achieved.	With	carefully	placed	wait1Msec()	function	calls,	animate	the	process	of

drawing	the	figure	in	Exercise	8	line	by	line.

10.	Animate	a	bouncing	ball	on	the	NXT	display.	This	may	require	a	lot	of	nxtDrawCircle()

function	calls	(and	a	lot	of	copy	and	paste).

It	will	also	require	the	use	of	the

http://upload.wikimedia.org/wikipedia/commons/a/a7/Olympic_flag.svg

eraseDisplay()	function.

11.	Animate	a	pulsating	circle.	This	will	require	the	eraseDisplay()	function.

3.4.	EXERCISES

13

12.	Create	an	interesting	display	of	your	own.

13.	Create	an	interesting	animation	of	your	own.

14

CHAPTER	3.	THE	DISPLAY

Chapter	4

Sensors	and	Functions

Like	the	display,	sensors	provide	another	kind	of	interface	with	the	robot.	Each	of	these

supply	information	to	the	robot	about	the	environment.	There	are	four	sensors	available.

1.	sound	–	measures	the	amplitude	of	sound	received	by	its	microphone.

2.	light	–	measures	the	brightness	of	light.

3.	sonar	–	measures	the	distance	from	the	sensor	to	a	nearby	object.

4.	touch	–	measures	whether	its	button	is	depressed	or	not.

The	first	two	give	integer	values	between	0	and	100	to	represent	the	measured	quantity.

The	third	gives	integer	values	for	distance,	in	centimeters,	from	the	target	(up	to	around	a

meter).	The	last	is	a	Boolean	value	that	is	true	if	depressed	and	false	otherwise.

4.1

Variables

The	value	of	a	sensor	changes	over	time.	Because	of	this,	the	programmer	can	never	be	sure

what	the	value	of	a	sensor	will	be	when	the	user	decides	to	run	their	program–it	depends

on	the	circumstances.	An	indeterminate	is	a	quantity	in	a	program	whose	value	is	not

known	to	the	programmer	at	the	time	they	write	the	program.	To	handle	indeterminacy,

programming	languages	provide	the	ability	to	use	variables.	Variables	act	as	place	holders

in	the	program	for	the	indeterminate	quantity.

For	example,	suppose	the	programmer	wants	to	display	the	light	sensor	value	on	the

display.	Unlike	earlier	examples	where	we	displayed	specific	shapes	and	strings,	the	value

of	the	light	sensor	is	not	known	in	advance.	To	get	around	this	problem,	the	programmer

defines	a	variable	in	their	program	to	hold	the	light	sensor	value,	writes	an	instruction	to

store	the	current	light	sensor	value	in	that	variable,	and	prints	the	contents	of	the	variable

to	the	display.	The	variable	plays	the	role	of	the	light	sensor	value.

To	define	a	variable,	the	programmer	must	give	it	a	name	and	know	what	kind	of	in-

formation	is	to	be	stored	in	the	variable.	The	name	is	the	string	the	programmer	types	in

order	to	refer	to	the	variable	in	a	program.	Names	must	respect	the	following	rules:

15

16

CHAPTER	4.	SENSORS	AND	FUNCTIONS

Type

Description

Syntax

Examples

integer

positive	and	negative

int

3,	0,	or	-1

whole	numbers	(and

zero)

float

decimal	values

float

3.14,	2,	or	-0.33

character

a	single	character

char

v,	H,	or	2

string

an	ordered	collection

string

Georgia,	house,	or	a

of	characters

boolean

a	value	that	is	either

bool

true,	false

true	or	false

Table	4.1:	The	five	basic	datatypes.

1.	no	spaces.

2.	no	special	symbols.

3.	cannot	start	with	a	digit	character.

4.	cannot	be	the	same	as	another	command,	e.g.	nxtDrawCircle.

Furthermore,	names	are	case-sensitive,	e.g.	the	variable	names	apple	and	Apple	represent

different	variables.

The	kind	of	information	stored	in	a	variable	is	the	datatype	of	the	variable.	There	are

5	basic	datatypes	available	as	summarized	in	Table	4.1.

To	inform	the	compiler	about	a	variable,	the	programmer	must	declare	it.	A	variable

declaration	has	the	general	form:

[type]	[variable	name];

A	variable	must	be	declared	before	it	is	used	in	a	program.	Because	of	this,	it	is	traditional

to	place	all	variable	declarations	near	the	top	of	the	program	block	(the	instructions	enclosed

by	matching	{}’s)	where	the	variable	is	first	used.

The	scope	of	a	variable	refers	to	those	places	in	a	program	where	the	variable	name

is	recognized.	In	RobotC,	like	ordinary	C,	the	scope	of	a	variable	is	the	section	after	the

declaration	statement	of	the	inner-most	program	block	containing	the	variable	declaration.

The	scope	extends	into	any	sub-blocks	of	the	block,	but	defers	to	any	variables	of	the	same

name	that	may	be	declared	in	the	sub-block,	see	Listing	4.1.	When	the	program	reaches	the	end	of	a
block	of	instructions,	all	of	the	variables	declared	inside	that	block	pass	out	of

scope.	The	information	in	those	variables	is	lost	and	the	computer	memory	used	by	those

variables	is	freed.

4.1.	VARIABLES

17

✞

☎

task	main	()	{

//	inner	-	most	block

//	c	o	n	t	a	i	n	i	n	g	d	e	c	l	a	r	a	t	i	o	n

int	n1	;

n1	=	10;

//	from	here	to	the	end	of	this	block	,

//	n1	has	the	value	10

{	//	sub	-	block

//	in	this	sub	-	block	,	n1	has

//	the	value	10.

}

{	//	sub	-	block

int	n1	;

n1	=	-2;

//	from	here	to	the	end	of	this	block	,

//	n1	has	the	value	-2

//	at	the	end	of	this	block	,	the	second

//	d	e	c	l	a	r	a	t	i	o	n	of	n1	passes	"	out	of	scope	"

}

//	r	e	f	e	r	e	n	c	e	s	to	n1	in	this	part	of

//	the	block	use	the	first	d	e	c	l	a	r	a	t	i	o	n

}

✝

✆

Listing	4.1:	Variable	scoping	rules.

18

CHAPTER	4.	SENSORS	AND	FUNCTIONS

4.2

Assignments

Variables	are	assigned	values	using	the	assignment	operator,	=.	The	assignment	operator	is

used	twice	in	Listing	4.1.	Assignments	always	take	the	value	on	the	right-hand	side	and	place	a	copy
into	the	variable	on	the	left-hand	side.	Right-hand	sides	can	be	literal	values	like	10

or	-2,	or	they	can	be	other	variables	of	the	same	type	as	the	left-hand	side.	Assignments

can	also	be	made	at	declaration	time.	Some	examples	of	assignments	are	in	Listing	4.2.

Additional	information	on	variable	naming,	declaring	and	assignment	can	be	found	here1.

✞

☎

task	main	()	{

//	variable	declarations	,

//	some	with	a	s	s	i	g	n	m	e	n	t	s

int	n1	,	n2	;

s	t	r	i	n	g	name	=	"	Joe	S	t	r	u	m	m	e	r	"	;

s	t	r	i	n	g	band	=	"	The	C	l	a	s	h	"	;

//	a	few	more	a	s	s	i	g	n	m	e	n	t	s

n1	=	3;

n2	=	n1	;

n1	=	4;

name	=	band	;

}

✝

✆

Listing	4.2:	A	few	examples	of	variable	assignments.

Read	the	instructions	in	Listing	4.2	closely	and	try	to	determine	the	values	of	each	of	the	variables	just
before	they	pass	out	of	scope.	At	the	end	of	the	block	of	instructions,	n1

holds	the	value	4,	n2	holds	3,	name	holds	"The	Clash",	and	band	holds	"The	Clash".

Nowhere	is	the	difference	between	assignment	and	equality	more	stark	than	in	the	snippet

of	instruction

✞

☎

int	c	o	u	n	t	=	0;

c	o	u	n	t	=	c	o	u	n	t	+	1;

✝

✆

This	seemingly	nonsensical	assignment	is	actually	quite	useful	in	that	it	increments	the

value	of	the	variable,	count,	by	1.	Remember	that	the	assignment	operator	first	reduces	the

right-hand	side	to	a	single	value,	then	copies	the	result	into	the	variable	on	the	left-hand

side.	In	this	case,	the	right-hand	side	is	the	sum	of	the	variable,	count,	and	the	literal

value,	1.	The	previous	line	set	the	value	of	count	to	0,	so	the	result	of	the	assignment	is

to	set	the	value	of	count	to	1.	This	kind	of	assignment	is	great	for	counting	events–keeping

track	of	how	many	times	something	has	happened.	It	is	important	that	the	variable	being

incremented	has	a	meaningful	value	before	doing	this	kind	of	assignment.	Otherwise,	the

result	is	unpredictable.

Incrementing	by	1	is	just	one	example	of	this	type	of	assignment.	The	following	snippet

increments	by	2’s–handy	if	we	want	a	sequence	of	even	numbers.

1http://carrot.whitman.edu/Robots/PDF/Variables.pdf

4.3.	FORMATTED	OUTPUT

19

✞

☎

int	c	o	u	n	t	=	0;

c	o	u	n	t	=	c	o	u	n	t	+	2;

✝

✆

Decrementing	is	also	possible.	A	decrement	involves	decreasing	the	value	of	the	variable

http://carrot.whitman.edu/Robots/PDF/Variables.pdf

by	a	fixed	amount.

Incrementing	and	decrementing	are	so	common	in	programming	that	most	languages

provide	shortcuts	for	them.	In	RobotC,	we	can	also	use

✞

☎

int	c	o	u	n	t	=	0;

c	o	u	n	t	+=	1;

✝

✆

to	increment	by	1	(or	any	value	we	choose).	Even	shorter,	we	can	use

✞

☎

int	c	o	u	n	t	=	0;

c	o	u	n	t	++;

✝

✆

to	increment	by	1	(and	only	1	with	this	syntax).	There	are	similar	operators	for	decrementing,

-=	and	--.

4.3

Formatted	Output

A	common	task	in	programming	is	to	print	the	value	of	a	particular	variable	to	the	display.

It	is	also	common	for	the	values	of	the	variables	to	be	labeled	with	informative	strings.	For

example,	when	displaying	the	value	of	the	light	sensor	on	the	screen,	it	might	be	useful	to

print,

Light	level:	33

to	distinguish	the	light	level	number	from,	say,	the	sound	level	number.	Generating	the

printed	statement	above	requires	a	mix	of	literal	strings	and	variables	and	a	knowledge	of

format	codes.	Format	codes	are	special	strings,	embedded	in	larger	strings,	that	act	as

place	holders	for	variables.	The	formatted	string	for	the	light	level	output	would	be

"Light	level:	%d"

When	used	with	nxtDisplayString()	as	in

nxtDisplayString(2,"Light	level:	%d",	LightLevel);

the	%d	is	replaced	with	the	value	of	the	variable	LightLevel	given	as	the	third	argument

which	presumably	had	a	value	assigned	to	it	earlier.	Most	of	the	display	instructions	can

take	up	to	two	variables.	For	example,

20

CHAPTER	4.	SENSORS	AND	FUNCTIONS

nxtDisplayString(7,"Light	level:	%d,	sound	level:	%d",

LightLevel,	SoundLevel);

will	replace	the	first	%d	with	the	value	of	LightLevel	and	the	second	%d	with	the	value	of

SoundLevel.	Because	the	robot	display	is	not	able	to	fit	many	characters	on	a	single	line,

only	being	able	to	use	two	variables	in	a	formatted	string	is	not	a	significant	limitation.	In

fact,	the	last	example	is	too	wide	to	fit	on	the	robot’s	modest	display.	To	get	it	to	fit,	we

would	have	to	adapt	it	as

nxtDisplayString(6,"Light	level:	%d",	LightLevel);

nxtDisplayString(7,"Sound	level:	%d",	SoundLevel);

The	%d	format	code	is	useful	for	printing	integer	variables.	It	automatically	opens	enough

space	in	the	output	string	to	fit	the	value	of	the	variable	inside.	For	the	very	particular

programmer,	there	is	an	extra	parameter	you	can	use	with	%d	to	force	it	to	open	up	a	fixed

amount	of	space	for	the	value	of	the	variable	no	matter	how	many	digits	it	might	contain.

The	syntax	is	%nd	where	n	is	an	integer	specifying	the	number	of	spaces	to	reserve	for	the

number.	This	is	useful,	for	example,	if	the	variable	to	be	printed	might	have	1,	2,	or	3	digits.

In	that	case,	the	format	code	%3d	will	always	reserve	3	spaces	for	the	variable.	This	is	useful

when	trying	to	line	up	a	column	of	numbers.	An	example	is	in	Listing	4.3.

✞

☎

task	main	()	{

int	n1	,	n2	,	n3	;	n1	=	100;

n2	=	-3;	n3	=	24;

n	x	t	D	i	s	p	l	a	y	S	t	r	i	n	g	(0	,	"	M	o	t	o	r	A	:	%3	d	"	,	n1);

n	x	t	D	i	s	p	l	a	y	S	t	r	i	n	g	(1	,	"	M	o	t	o	r	B	:	%3	d	"	,	n2);

n	x	t	D	i	s	p	l	a	y	S	t	r	i	n	g	(2	,	"	M	o	t	o	r	C	:	%3	d	"	,	n3);

}

✝

✆

Listing	4.3:	Formatted	output.	This	snippet	will	print	the	numbers	neatly	in	a	right	justified

column.

A	word	of	caution,	if	there	is	not	enough	space	reserved	to	hold	the	value	of	the	variable,

then	the	space	will	be	expanded	to	accommodate,	potentially	ruining	any	carefully	crafted

formatting.	The	%d	format	code	is	for	integer-type	variables.	The	%f,	%c,	and	%s	codes	are

used	with	float-,	character-,	and	string-type	variables	respectively.	Additional	information

on	format	codes	can	be	found	in	the	RobotC	On-line	Support	on	the	left	side-bar	under	NXT

Functions	→	Display	section.

String	variables	are	special	because	they	do	not	need	format	codes	to	be	included	in

formatted	output.	Instead,	the	formatted	output	string	can	be	constructed	using	the	addition

http://www.robotc.net/support/nxt/MindstormsWebHelp/index.htm

operator,	+.	When	two	strings	are	added	together,	the	result	is	a	third	string	that	is	the

concatenation	of	the	original	strings	reading	from	left	to	right.	Consider	the	snippet	of

instructions	in	Listing	4.4.	Here	we	do	not	need	a	format	code	in	order	to	include	the	string	variables	in
the	formatted	output.	Instead,	we	build	the	string	to	be	displayed	by	“adding”

together	existing	strings	so	that	it	appears	the	way	we	want.	In	this	case,	we	want	to	display

4.4.	USING	SENSORS

21

✞

☎

s	t	r	i	n	g	f	i	r	s	t	=	"	G	r	a	c	e	"	;

s	t	r	i	n	g	last	=	"	H	o	p	p	e	r	"	;

n	x	t	D	i	s	p	l	a	y	S	t	r	i	n	g	(0	,	f	i	r	s	t	+	"	"	+	last);

w	a	i	t	1	M	s	e	c	(1	0	0	0)	;

✝

✆

Listing	4.4:	Concatenation	of	strings	and	the	string	addition	operator,	+.

the	first	name	followed	by	the	last	name	with	a	space	character	in	between.	Adding	the

three	pieces	together	in	the	correct	order,	left	to	right,	gives	us	the	desired	result.

Another	important	distinction	between	strings	and	character	datatypes	is	how	literal

values	are	recognized	by	the	compiler.

A	literal	string	must	be	surrounded	by	double-

quote	characters,	".	A	literal	character	must	be	surrounded	by	apostrophe	characters,	’.

Sometimes	using	one	when	we	mean	to	use	the	other	will	cause	an	error.	Unfortunately,

sometimes	those	kinds	of	errors	are	not	detected	by	the	compiler	and	only	manifest	as

misbehavior	when	the	program	is	executed.

4.4

Using	Sensors

Listing	4.5	shows	a	program	that	will	display	the	value	of	the	light	sensor.	In	order	to	write	the	program
in	Listing	4.5,	the	programmer	must	“declare”	a	light	sensor	variable.

Fortunately,	RobotC	makes	it	easy	to	do	this.	Just	select	the	menu	item	Robot→	Motors

and	Sensors	Setup.	In	the	resulting	window,	select	the	Sensors	tab.	There	are	4	lines	labeled

S1,	S2,	S3,	and	S4.	Each	line	corresponds	to	the	ports	on	the	NXT	brick	labeled	1,	2,	3,	and

4	respectively.	With	the	light	sensor	plugged	into	Port	1,	we	fill	in	the	S1	line.	In	the	first

field,	we	give	a	variable	name	to	the	sensor,	e.g.	LightSensor.	Any	name	may	be	used	as

long	as	it	follows	the	variable	naming	rules	of	Section	4.1.	Next	we	choose	the	sensor	type:	Light
Inactive.	(Light	Active	uses	the	same	sensor,	but	in	a	mode	where	a	small	light

is	turned	on	to	aid	in	low-light	situations.)	When	completed,	RobotC	will	insert	the	sensor

declaration	line	as	seen	at	the	top	of	Listing	4.5.

✞

☎

#	p	r	a	g	m	a	c	o	n	f	i	g	(Sensor	,	S1	,	L	i	g	h	t	S	e	n	s	o	r	,	s	e	n	s	o	r	L	i	g	h	t	I	n	a	c	t	i	v	e)	task	main	()
{

int	L	i	g	h	t	L	e	v	e	l	=	0;

L	i	g	h	t	L	e	v	e	l	=	S	e	n	s	o	r	V	a	l	u	e	[L	i	g	h	t	S	e	n	s	o	r];

n	x	t	D	i	s	p	l	a	y	S	t	r	i	n	g	(3	,	"	L	i	g	h	t	l	e	v	e	l	:	%	d	"	,	L	i	g	h	t	L	e	v	e	l);

w	a	i	t	1	0	M	s	e	c	(3	0	0)	;

}

✝

✆

Listing	4.5:	This	example	will	take	a	single	reading	from	the	light	sensor	and	display	the

value	in	a	formatted	string.	Notice	the	instruction	at	the	top	of	the	program	inserted	by

RobotC	to	declare	the	light	sensor.

A	light	sensor	reading	is	of	integer-type.	The	current	value	of	the	light	sensor	is	always

22

CHAPTER	4.	SENSORS	AND	FUNCTIONS

available	in	SensorValue[LightSensor]	(this	is	actually	one	element	of	a	special	array	of

values	that	we	will	discuss	later).	In	the	square	brackets,	we	find	the	variable	name	that

we	have	declared	for	the	light	sensor.	For	simplicity	and	readability,	we	store	the	light

sensor	reading	in	the	integer-type	variable	LightLevel	(an	indeterminate	value).	We	use

this	variable	to	display	the	light	level	in	a	formatted	string.

4.5

Functions

The	built	in	functions	of	RobotC,	like	nxtDisplayString(),	are	able	to	perform	many

tasks.	For	a	number	of	reasons,	however,	it	is	desirable	to	construct	new	functions	out	of

the	existing	functions.	A	function	is	a	self-contained	collection	of	instructions	that,	when

called,	accepts	a	specified	number	of	arguments,	performs	some	task,	and	returns	a	value

back	to	the	calling	program.	There	are	three	main	reasons	for	writing	new	functions:

1.	Procedural	abstraction	–	allows	the	programmer	to	think	of	a	program	as	a	collection

of	sub	tasks	and	to	focus	on	making	each	sub-task	work	correctly	before	“gluing”	them

together	to	accomplish	the	complete	task.

2.	Reusability	–	allows	the	programmer	to	write	and	debug	a	set	of	instructions	that

can	be	used	over	and	over	in	different	contexts	rather	than	re-writing	the	same	set	of

instructions	in	numerous	places.

3.	Readability	–	even	if	reusability	is	not	an	issue,	in	large	programs	it	is	often	desirable

to	“encapsulate”	instructions	for	a	particular	sub	task	into	an	aptly	named	function.

Doing	so	makes	the	main	part	of	the	program	a	sequence	of	function	calls	that	is	quite

readable.	Encapsulation	also	helps	to	isolate	programming	errors.	Once	a	program

exceeds	one	hundred	lines	or	so,	the	programmer	should	consider	using	functions	to

encapsulate	related	sections	of	instructions	for	the	sake	of	readability.

Function	syntax	is	similar	to	variable	syntax	in	that	a	function	must	be	defined	before

it	is	called.	The	scoping	rules	of	a	function,	the	places	in	the	program	where	the	name	of

the	function	is	recognized,	are	the	same	as	for	variables.	The	naming	rules	for	functions	also

match	those	of	variables.	The	general	syntax	for	a	function	declaration	is

✞

☎

//	function	comment

[r	e	t	u	r	n	type]	[name]([a	r	g	u	m	e	n	t	list])	{

//	body	block	,	i	n	s	t	r	u	c	t	i	o	n	s	to	carry	out

//	function	’s	task

}

✝

✆

Like	variable	declarations,	function	definitions	may	occur	anywhere,	but	tradition	has	the

programmer	put	all	of	the	function	definitions	at	the	top	of	the	program	before	the	start

of	the	main	program	block.	Tradition	also	dictates	that	a	descriptive	comment	above	each

declaration	describe	the	purpose,	inputs,	and	outputs	of	the	function.

4.5.	FUNCTIONS

23

✞

☎

//	renders	a	simple	10	by	10	smiley	face

//	on	the	display	centered	about	the

//	c	o	o	r	d	i	n	a	t	e	s	(x	,	y)	,	no	return	value

void	D	i	s	p	l	a	y	S	m	i	l	e	y	(int	x	,	int	y)	{

n	x	t	D	r	a	w	E	l	l	i	p	s	e	(x	-5	,	y	+5	,	x	+5	,	y	-5);

n	x	t	S	e	t	P	i	x	e	l	(x	-2	,	y	+2);

n	x	t	S	e	t	P	i	x	e	l	(x	+2	,	y	+2);

n	x	t	S	e	t	P	i	x	e	l	(x	,	y	-2);

n	x	t	S	e	t	P	i	x	e	l	(x	-1	,	y	-2);

n	x	t	S	e	t	P	i	x	e	l	(x	+1	,	y	-2);

n	x	t	S	e	t	P	i	x	e	l	(x	-2	,	y	-1);

n	x	t	S	e	t	P	i	x	e	l	(x	+2	,	y	-1);

r	e	t	u	r	n	;

}

✝

✆

Listing	4.6:	A	function	that	draws	a	10	×	10	pixel	smiley	face	centered	at	the	coordinates

(x,y).

Consider,	for	example,	the	carefully	crafted	instructions	in	Listing	4.6	that	use	RobotC

commands	to	create	a	smiley	face	on	the	display.

The	obvious	advantage	of	this	function	is	that	numerous	smiley	faces	can	be	positioned

around	the	display	area,	but	the	work	of	how	to	render	the	smiley	face	relative	to	the	center

coordinates	(x,y)	only	needs	to	be	done	once.	The	descriptive	name	DisplaySmiley	helps

with	readability.	This	function	accepts	two	integer-type	arguments.	The	dummy	variables

x	and	y	can	be	replaced	with	any	integer	variable	in	the	calling	program	or	with	literal

integers.	The	return;	statement	signifies	the	end	of	the	function	and	causes	the	program

execution	to	return	to	the	calling	program	just	after	the	function	call.	In	this	example,	the

return	statement	is	not	necessary,	but	it	is	good	practice	to	include	it	regardless.

✞

☎

//	computes	the	mean	of	its	two	arguments	,

//	returns	the	mean

f	l	o	a	t	Mean	(f	l	o	a	t	a	,	f	l	o	a	t	b)	{

r	e	t	u	r	n	(a	+	b)/2;

}

✝

✆

Listing	4.7:	A	function	that	accepts	two	float-type	arguments,	computes	their	mean,	and

returns	the	result	to	the	calling	program.

Consider	Listing	4.7	which	is	an	example	of	a	function	that	computes	the	average	of	its	two	arguments
and	returns	the	result	to	the	calling	program.	In	the	calling	program,	the

function	call	is	literally	replaced	by	the	return	value.	For	example,	in	the	calling	program,

the	instruction

average	=	Mean(w1,w2);

24

CHAPTER	4.	SENSORS	AND	FUNCTIONS

assigns	the	mean	of	the	numbers	w1	and	w2	to	the	variable	average.	During	execution,	the

program	recognizes	that	in	order	to	perform	the	assignment,	it	must	first	determine	the	value

of	the	right-hand	side.	All	expressions	and	functions	on	the	right-hand	side	are	evaluated

and	reduced	to	a	single	value	before	the	assignment	occurs.

4.5.1

Local	variables

The	body	block	of	a	function	is	just	like	the	main	program	in	that	any	instructions	can	be

used	therein.	If	new	variables	are	needed	within	the	function’s	body	block	to	perform	the

function’s	task,	they	may	be	declared.	Variables	declared	inside	a	function’s	body	block	are

called	local	variables.	Their	scopes	follow	the	ordinary	scoping	rules	of	all	variables.	Local

variables	pass	out	of	scope	when	their	declaring	functions	end.

4.5.2

Pass-by-value	vs.	pass-by-reference

By	default,	the	variables	declared	in	the	argument	list	of	a	function	definition	are	local

variables	to	that	function.	When	a	function	is	called,	its	arguments	are	copied	into	the

argument	variables.	The	original	variables,	in	the	calling	program,	are	not	affected	by	any

changes	made	by	the	function	to	its	argument	variables.	This	style	of	argument	passing	is

pass-by-value.

Alternatively,	the	programmer	may	wish	for	changes	made	by	the	function	to	one	or	more

of	its	arguments	to	be	reflected	in	the	corresponding	variables	of	the	calling	program.	To

accomplish	this,	when	the	variable	is	passed	into	the	function	through	one	of	its	arguments,

the	copy	process	is	skipped	and	the	function	has	access	to	the	actual	variable	as	it	exists

in	the	calling	program.	This	style	of	argument	passing	is	pass-by-reference.	The	syntax

to	inform	the	compiler	what	style	of	argument	passing	is	desired	is	to	simply	precede	the

argument	name	with	a	’&’	character.

Pass-by-reference	is	particularly	useful	when	the	programmer	wishes	to	have	a	function

return	more	than	one	piece	of	information	to	the	calling	program.	For	example,	suppose	in

our	Mean()	function	we	wished,	not	only	to	have	the	mean	returned	to	the	calling	program,

but	also	to	have	the	function	give	us	the	sum	of	the	two	arguments.

A	simple	return

statement	is	unable	to	return	more	than	one	value.	To	get	around	this,	consider	the	function

in	Listing	4.8.

Compare	this	to	the	function	in	Listing	4.7.	The	return	type	is	now	void	and	there	are	two	pass-by-
reference	arguments.	Observe	the	use	of	the	’&’	character	in	the	second	two

arguments	to	indicate	that	these	arguments	are	pass-by-reference.	Listing	4.9	shows	how	to	use	this
function	to	get	both	the	sum	and	the	mean	of	the	first	two	arguments.

The	main	program	declares	4	float-type	variables.	The	x	and	y	variables	hold	the	numbers

to	be	summed	and	averaged.	Notice	that	we	also	need	variables,	s	and	m,	to	hold	the	results	of

the	MeanSum()	function.	As	the	instructions	of	the	main	program	are	carried	out	from	top	to

bottom,	before	the	call	to	MeanSum(),	the	variables	s	and	m	are	empty	(uninitialized).	After

the	call	to	MeanSum(),	they	contain	the	sum	and	mean	respectively.	Only	after	MeanSum()

has	been	allowed	to	do	its	work,	can	we	display	the	contents	of	s	and	m.	If	we	mistakenly	try

to	display	the	contents	of	s	and	m	before	the	call	to	MeanSum(),	the	results	are	unpredictable–

we	may	just	see	a	zero,	or	we	may	see	some	random	number.

4.5.	FUNCTIONS

25

✞

☎

//	computes	the	sum	and	the	mean	of	its

//	first	two	arguments	,	the	sum	is	placed

//	in	the	third	argument	,	the	mean	is

//	placed	in	the	fourth	argument

void	M	e	a	n	S	u	m	(f	l	o	a	t	a	,	f	l	o	a	t	b	,	f	l	o	a	t	&	sum	,

f	l	o	a	t	&	mean)	{

sum	=	a	+	b	;

mean	=	(a	+	b)/2;

r	e	t	u	r	n	;

}

✝

✆

Listing	4.8:	A	function	that	accepts	two	pass-by-value	float-type	arguments	and	two	pass-

by-reference	arguments,	computes	the	sum	and	mean,	and	puts	the	results	into	the	pass-by-

reference	arguments.

✞

☎

task	main	()	{

f	l	o	a	t	x	,	y	,	s	,	m	;

x	=	3	.	4	;	y	=	2	.	8	;

M	e	a	n	S	u	m	(x	,	y	,	s	,	m);

n	x	t	D	i	s	p	l	a	y	S	t	r	i	n	g	(0	,	"	Sum	=	%5.2	f	"	,	s);

n	x	t	D	i	s	p	l	a	y	S	t	r	i	n	g	(1	,	"	Mean	=	%5.2	f	"	,	m);

w	a	i	t	1	0	M	s	e	c	(2	0	0)	;

}

✝

✆

Listing	4.9:	A	main	program	that	uses	the	MeanSum()	function	and	displays	the	results.

26

CHAPTER	4.	SENSORS	AND	FUNCTIONS

More	on	RobotC	function	syntax	can	be	found	here2.

2http://carrot.whitman.edu/Robots/PDF/Functions.pdf

4.6.	EXERCISES

27

4.6

Exercises

1.	Which	of	the	following	variable	names	are	valid?

n,	2n,	tax2,	SpeciesType,	sales	tax,	dog#,	?89

http://carrot.whitman.edu/Robots/PDF/Functions.pdf

If	invalid,	why?

2.	Suppose	a	programmer	wrote	a	program	that,	when	executed,	displayed	a	message

on	the	screen	indicating	whether	the	touch	sensor	was	depressed	or	not.	What	is	the

indeterminate	in	the	program?

3.	Suppose	we	have	an	integer-type	variable,	count.	Give	two	different	RobotC	expres-

sions	that	decrement	count	by	2.

4.	Do	some	experiments	(run	little	test	programs),	to	determine	what	happens	when	a

character-type	variable	is	decremented.	How	about	incremented?	Give	your	observa-

tions	and	speculate	about	what	might	be	going	on.

5.	Write	a	program	that	reads	a	value	from	the	sonar	sensor	and	displays	the	value

graphically	as	a	horizontal	line	across	the	center	of	the	screen	that	starts	at	(0,31)

and	ends	at	(x,31)	where	x	is	the	value	of	the	sonar	sensor.	The	idea	is	that	the

length	of	the	line	indicates	the	magnitude	of	the	sonar	reading.

6.	Write	a	program	that	reads	a	value	from	the	light	sensor	and	displays	the	value	graph-

ically	as	a	filled	circle	with	center	(50,32)	and	radius	x,	where	x	is	the	value	of	the

light	sensor.	The	idea	is	that	the	size	of	the	circle	indicates	the	magnitude	of	the	light

reading.

7.	Write	a	program	that	starts,	waits	1	second,	reads	the	light	sensor,	displays	the	value

for	1	second,	and	exits.

8.	Write	a	program	that	starts,	waits	1	second,	reads	the	sonar	sensor,	displays	the	value

for	1	second,	and	exits.

9.	Write	a	program	that	implements	a	function	called

displayLightSensor()

that	accepts	one	argument	called	wait.	The	function	will	read	the	light	sensor	and

display	its	value	for	wait	seconds	before	exiting.	Use	the	function	to	write	a	program

that	reads	the	light	sensor	and	displays	its	value	three	separate	times,	pausing	1.5

second	between	reads.

10.	Write	a	program	that	displays	an	uninitialized	variable.	What	happens	when	you	run

the	program?

11.	Modify	the	DisplaySmiley()	function	in	Listing	4.6	so	that	it	shows	a	frown	instead.

Use	it	to	animate	a	bouncing	frowny	face.

28

CHAPTER	4.	SENSORS	AND	FUNCTIONS

12.	Write	a	function	that	displays	an	equilateral	triangle	with	center	(x,	y),	side	length	a,

and	orientation	θ.	You	may	assume	that	the	side	length	is	in	pixels	and	that	orientation

is	in	degrees.

Chapter	5

Decisions

In	Section	4.1,	we	discussed	the	notion	of	indeterminacy–values	in	programs	that	are	not	known	to	the
programmer	when	they	write	the	program.	When	dealing	with	indeterminate	information,	we	must	have
a	method	of	making	decisions.	In	real	life,	decisions	are

complicated,	based	on	incomplete	information	and	thousands	of	variables.	In	computer	sci-

ence,	decisions	are	more	straightforward	and	ultimately	result	in	one	of	two	possible	choices.

Because	of	this	clear	dichotomy,	programming	languages	base	decision	making	on	Boolean

algebra–the	study	of	true	and	false	statements.	This	explains	why	one	of	the	basic	datatypes

summarized	in	Table	4.1	is	Boolean.

5.1

Boolean	Algebra

In	ordinary	algebra,	we	study	variables	that	take	on	any	real	value.	We	study	the	behavior	of

these	variables	as	they	interact	using	the	ordinary	operations	of	arithmetic,	namely	addition,

subtraction,	multiplication	and	division.	In	Boolean	algebra,	the	variables	can	have	only	two

values,	true	or	false.	Further,	the	operations	are	no	longer	those	of	arithmetic,	but	rather

those	of	symbolic	logic	and	are	called	conjunction,	disjunction	and	negation.

In	RobotC,	we	can	declare	a	pair	of	Boolean	variables	as

bool	p,q;

and	we	can	assign	values	to	them	as

p=false;	q=true;

In	much	the	same	way	that	we	can	combine	integer-	and	float-type	variables	using	the	ordi-

nary	arithmetic	operations,	we	can	combine	boolean-type	variables	with	Boolean	operations.

The	Boolean	operations	are	defined	as	follows.

5.1.1

Conjunction

Also	known	as	the	“and	operator”,	conjunction	in	RobotC	is	represented	by	’&&’.	Two

Boolean	values	are	combined	syntactically	as

p	&&	q;

29

30

CHAPTER	5.	DECISIONS

&&

true

false

true

true

false

false

false

false

Table	5.1:	Conjunction,	the	“and	operator”.

||

true

false

true

true

true

false

true

false

Table	5.2:	Disjunction,	the	“or	operator”.

and	the	result	is	a	new	Boolean	value.	The	result	depends	on	the	values	of	p	and	q	and

follows	the	rules	outlined	in	Table	5.1.

5.1.2

Disjunction

Also	known	as	the	“or	operator”,	disjunction	in	RobotC	is	represented	by	’||’.	Two

Boolean	values	are	combined	syntactically	as

p	||	q;

and	the	result	is	a	new	Boolean	value.	The	result	depends	on	the	values	of	p	and	q	and

follows	the	rules	outlined	in	Table	5.2.

5.1.3

Negation

Also	known	as	the	“not	operator”,	negation	in	RobotC	is	represented	by	’~’.	Unlike	the

conjunction	and	disjunction	operators,	the	negation	operator	only	acts	on	a	single	boolean

value	as

~p;

and	the	result	is	a	new	Boolean	value	that	is	simply	the	opposite	of	the	value	of	p.	If	p

is	false,	then	~p	is	true.	If	p	is	true,	then	~p	is	false.	Additional	information	about

Boolean	algebra	in	RobotC	is	available	here1.

5.1.4

Boolean	Expressions

It	is	surprising	how	complicated	Boolean	algebra	can	get	given	the	simple	and	limited	nature

of	its	variables	and	operations.	A	Boolean	expression	is	any	combination	of	Boolean

variables	and	operations	that	can	be	evaluated	to	a	Boolean	value	if	all	the	values	of	the

1http://carrot.whitman.edu/Robots/PDF/Boolean%20Algebra.pdf

5.2.	COMPARISON	OPERATORS

31

Syntax

Description

>=

greater	than	or	equal,	evaluates	to	true	if	the	left-hand

side	is	greater	than	or	equal	to	the	right-hand	side,	false

otherwise.

>

greater	than,	evaluates	to	true	if	the	left-hand	side	is

greater	than	the	right-hand	side,	false	otherwise.

==

equal	to,	evaluates	to	true	if	the	left-hand	side	is	equal

to	the	right-hand	side,	false	otherwise.

http://carrot.whitman.edu/Robots/PDF/Boolean%20Algebra.pdf

<=

less	than	or	equal,	evaluates	to	true	if	the	left-hand	side

is	less	than	or	equal	to	the	right-hand	side,	false	other-

wise.

<

less	than,	evaluates	to	true	if	the	left-hand	side	is	less

than	the	right-hand	side,	false	otherwise.

!=

not	equal	to,	evaluates	to	true	if	the	left-hand	side	is	not

equal	to	the	right-hand	side,	false	otherwise.

Table	5.3:	The	comparison	operators.

variables	are	known.	For	convenience,	Boolean	expressions	may	also	include	parentheses	to

control	the	order	of	evaluation.	Negation	takes	precedence	over	conjunction	and	disjunction.

In	the	case	of	ties,	expressions	are	evaluated	from	left	to	right.	Consider	the	snippet	of

instruction	in	Listing	5.1.

✞

☎

bool	p	,	q	,	r	,	s	;

p	=	true	;	q	=	f	a	l	s	e	;	r	=	true	;

s	=~(p	||	q)	&&	(q	||	r)	&&	(r	&&	p);

✝

✆

Listing	5.1:	A	compound	Boolean	expression.	At	the	end	of	the	block,	s	has	the	value	false.

5.2

Comparison	Operators

Now	that	we	have	an	understanding	of	Boolean	algebra,	it	is	important	to	note	that	in

programming	we	rarely	construct	expressions	comprised	solely	of	Boolean	variables	like	that

of	Listing	5.1.	Instead,	we	usually	construct	Boolean	expressions	that	arise	by	comparing	variables	of
the	other	types.	In	RobotC	there	are	6	operators	designed	to	compare	values

and	return	Boolean	values.	They	are:	greater	than	or	equal,	greater	than,	equal,	less	than,

less	than	or	equal,	and	not	equal.	Each	has	its	own	syntax	summarized	in	Table	5.3

Be	wary	of	the	==	operator!	A	common	programming	error	is	to	use	the	assignment

operator,	=,	to	compare	values.	This	error	is	exacerbated	by	the	fact	that,	because	the

mistaken	syntax	actually	makes	sense	to	the	compiler	(a	fact	that	we	will	discuss	later),	it

will	not	cause	a	compiler	error.

32

CHAPTER	5.	DECISIONS

Listing	5.2	shows	how	to	use	comparison	operators.	It	shows	the	common	task	of	testing	whether	a
variable	lies	inside	a	certain	range.	The	expressions	in	parentheses	evaluate	to

either	true	or	false	depending	on	the	values	of	the	variables	x,	y,	and	z.

✞

☎

f	l	o	a	t	x	=5.2	,	y	=0.0	,	z	=	1	0	.	0	;

bool	s	;

s	=	(x	>=	y)	&&	(x	<=	z);

✝

✆

Listing	5.2:	An	example	of	using	comparison	operators.	The	value	of	s	at	the	end	of	the

snippet	is	true.	This	shows	how	a	programmer	would	test	if	y	≤	x	≤	z.

It	is	interesting	to	note	that	the	comparison	operators	also	work	on	string	and	character

values	using	alphabetical	order.	When	comparing	two	strings/characters,	whichever	comes

first	in	the	dictionary	is	the	smaller	of	the	two.	String/character	comparisons	are	case-

sensitive	with	the	rule	that	capital	letters	are	less	than	their	corresponding	lower-case	letters.

5.3

Conditional	Statements

Now	that	we	have	the	ability	to	create	Boolean	expressions,	we	introduce	conditional	state-

ments.	A	conditional	statement	allows	a	block	of	instruction	to	be	executed	depending

on	the	value	of	a	Boolean	expression.

5.3.1

If-statements

An	if-statement	is	a	block	of	instruction	that	is	executed	only	if	its	predicate	is	true.	The

predicate	is	the	Boolean	expression	that	controls	whether	or	not	the	block	of	an	if-statement

is	executed.	If	the	predicate	is	true,	then	the	block	will	be	executed,	if	it	is	false	then	the

block	will	be	skipped	and	program	execution	will	resume	after	the	closing	brace	of	the	block.

The	syntax,	given	in	Listing	5.3	is	simple	and	quite	readable.

✞

☎

if	([p	r	e	d	i	c	a	t	e])	{

//	c	o	n	d	i	t	i	o	n	a	l	block

}

✝

✆

Listing	5.3:	The	syntax	of	an	if-statement.	The	predicate,	a	Boolean	expression,	determines

whether	the	succeeding	block	of	instruction	is	executed.

5.3.2

If-else	statements

A	straightforward	extension	of	the	if-statement	is	the	if-else-statement.	In	an	if-else-statement

the	value	of	the	predicate	determines	which	of	two	blocks	of	instructions	is	executed.	The

syntax	is	summarized	in	Listing	5.4.

5.3.	CONDITIONAL	STATEMENTS

33

✞

☎

if	([p	r	e	d	i	c	a	t	e])	{

//	c	o	n	d	i	t	i	o	n	a	l	block	executed	if

//	the	pr	edic	ate	is	true

}

else	{

//	c	o	n	d	i	t	i	o	n	a	l	block	executed	if

//	the	pr	edic	ate	is	false

}

✝

✆

Listing	5.4:	The	syntax	of	an	if-else-statement.	If	the	predicate	is	true,	the	first	block	is

executed,	otherwise	the	second	block	is	executed.

More	on	the	if-else	statement	can	be	found	here2.

In	Listing	5.5,	we	test	the	value	of	the	sonar	sensor	and	display	different	messages	depending	on	the
distance	measured	by	the	sensor	at	run	time.

✞

☎

#	p	r	a	g	m	a	c	o	n	f	i	g	(Sensor	,	S1	,	Sonar	,	s	e	n	s	o	r	S	O	N	A	R)

task	main	()	{

int	d	i	s	t	a	n	c	e	=	0;

d	i	s	t	a	n	c	e	=	S	e	n	s	o	r	V	a	l	u	e	[S	o	n	a	r];

n	x	t	D	i	s	p	l	a	y	S	t	r	i	n	g	(3	,	"	S	o	n	a	r	:	%	d	"	,	d	i	s	t	a	n	c	e);

if	(d	i	s	t	a	n	c	e	>	50)	{

n	x	t	D	i	s	p	l	a	y	S	t	r	i	n	g	(4	,	"	Come	closer	,	");

n	x	t	D	i	s	p	l	a	y	S	t	r	i	n	g	(5	,	"	I	can	’	t	see	you	!	");

}

else	{

n	x	t	D	i	s	p	l	a	y	S	t	r	i	n	g	(4	,	"	Back	off	man	!	,	");

}

w	a	i	t	1	0	M	s	e	c	(3	0	0)	;

}

✝

✆

Listing	5.5:	An	example	of	an	if-else-statement.	If	the	distance	measured	by	the	sonar	is

greater	than	50cm,	then	the	first	message	is	displayed.	If	it	is	less	than	or	equal	to	50cm,

then	the	second	message	is	displayed.	The	instruction	at	the	top	“declares”	the	sonar	sensor

and	was	inserted	by	RobotC.

The	current	value	of	the	sensor	is	an	integer	and	is	always	available	in	SensorValue[Sonar]

(this	is	actually	an	array	element,	we	will	discuss	arrays	a	little	later).	For	convenience	and

readability,	we	copy	the	current	value	of	the	sonar	sensor	into	the	integer-type	variable,

distance.	For	the	sake	of	the	example,	we	arbitrarily	decide	that	if	the	sonar	reading	is

more	than	50cm,	then	the	target	is	too	far	away	and	if	it	is	less	than	or	equal	to	50cm,	then

it	is	too	close.	We	use	the	if-else-statement	to	display	different	messages	depending	on	this

2http://carrot.whitman.edu/Robots/PDF/Decision%20Making.pdf

http://carrot.whitman.edu/Robots/PDF/Decision%20Making.pdf

34

CHAPTER	5.	DECISIONS

condition.	The	predicate	in	this	case	is	(distance>50).	The	value	of	the	predicate	depends

on	the	value	of	the	indeterminate,	distance.

5.4

Mathematical	Expressions

Numeric	variables	and	literals	can	be	combined	using	the	infix	style	of	mathematical	ex-

pressions.	Infix	is	the	method	of	expression	in	which	the	mathematical	operation	is	placed

between	the	values	upon	which	it	acts	(as	opposed	to	prefix	or	postfix).	This	is	the	style

common	in	most	TI	calculators.

5.4.1

Basic	arithmetic

RobotC	recognizes	the	usual	mathematical	symbols:	+	(addition),	-	(subtraction),	*	(mul-

tiplication),	and	/	(division).	In	addition,	RobotC	recognizes	the	use	of	parentheses	for

grouping	in	mathematical	expressions.	RobotC	also	recognizes	a	number	of	more	advanced

mathematical	functions	like	sine,	cosine,	logarithms	and	the	exponential	function.	Some

of	those	additional	functions	are	summarized	in	the	RobotC	On-line	Support	on	the	left	side-bar	under
the	NXT	Functions	→	Math	section.

5.4.2

Integer	arithmetic

The	basic	arithmetic	operations	are	straightforward	and	intuitive	in	most	cases.	However,

when	working	with	integer	datatypes	there	is	an	exception.	The	/	operator	(division)	au-

tomatically	detects	when	it	is	operating	on	a	pair	of	integers	and,	in	that	case,	switches	to

whole	number	division.	Whole	number	division	returns	an	integer	value	that	represents

the	number	of	times	the	denominator	goes	into	the	numerator,	dropping	any	remainder.

For	example,	the	expression	3/2	in	RobotC	evaluates	to	1	not	1.5.	The	expression	-1/2

http://www.robotc.net/support/nxt/MindstormsWebHelp/index.htm

evaluates	to	0.	The	expression	33/10	evaluates	to	3.

The	/	(division)	operator	only	performs	whole	number	division	if	both	the	numerator

and	denominator	are	integer	type	variables	or	literals.	In	all	other	cases,	ordinary	division

is	used.	To	force	ordinary	division	of	two	integers	either	include	a	decimal	point	if	it	is	a

literal	value,	e.g.	3/2.0	instead	of	just	3/2,	or	convert	the	integer	variable	to	a	float,	e.g.

((float)n)/2	instead	of	n/2.

If	we	want	the	remainder	after	whole	number	division,	there	is	separate	operator	for	inte-

gers,	%	(modulus)	that	returns	an	integer	value	that	represents	the	remainder	after	dividing

the	left-hand	side	by	the	right-hand	side.	For	example,	3%2	evaluates	to	1,	33%10	evaluates

to	3.

Together	these	operators	provide	powerful	methods	of	manipulating	integer	values.

5.4.3

Exponentiation

A	curious	omission	from	this	collection	of	mathematical	functions	is	the	exponentiation

function	for	computing	quantities	like	23	or	100.33.	However,	we	have	the	tools	necessary

to	build	our	own.

The	C	programming	language	uses	the	function,	pow(),	to	perform

5.4.	MATHEMATICAL	EXPRESSIONS

35

exponentiation.	For	example,	23	=	pow(2,3),	and	100.33	=	pow(10,0.33).	If	we	have	need

of	exponentiation,	we	simply	take	advantage	of	the	properties	of	logarithms	base	e	and	the

exponential	function,	ex.	Recall	that

log	(xa)	=	a	log	x.

e

e

Also,	recall	that	log	(ex)	=	x.	Combining	these	two	properties,	we	have

e

xa	=	ea	loge(x).

In	RobotC,	ex	=	exp(x),	and	log	(x)	=

e

log(x).	Therefore,	the	function	in	Listing	5.6	will

give	us	the	standard	C	exponentiation	function.

✞

☎

f	l	o	a	t	pow	(f	l	o	a	t	x	,	f	l	o	a	t	a)	{

r	e	t	u	r	n	exp	(a	*	log	(x));

}

✝

✆

Listing	5.6:	The	standard	C	language	exponentiation	function	built	of	available	RobotC

functions.

5.4.4

Randomness

Another	important	function	is	the	random	number	generator,	random().	Randomness	is

important	in	computer	science	for	the	purpose	of	running	realistic	simulations,	for	security,

and	for	introducing	unpredictability	in	game	play.

Each	time	the	random()	function	is	called,	it	returns	a	positive	integer	between	0	and

its	single	argument.	For	example,	random(10)	will	return	a	number	between	0	and	10

inclusively	each	time	it	is	called.	If	we	only	wanted	a	random	number	between	1	and	10,

we	would	use	the	expression	random(9)	+	1.	The	expression	random(100)-50	will	return

an	integer	between	-50	and	50	inclusively.	The	maximum	range	of	the	random()	function

is	32767.

To	generate	random	float	type	values	between	0	and	1	inclusively,	we	can	use	the	expres-

sion	random(32767)/(float)32767.	Here	we	use	the	maximum	possible	range	so	that	we

get	as	many	possibilities	between	0	and	1	as	we	can.

Since	computers	are	completely	deterministic,	getting	randomness	can	be	difficult.	In

many	programming	environments	(not	RobotC)	careful	analysis	of	the	random()	function

will	show	that	it	generates	the	same	sequence	of	random	numbers	every	time	you	restart	your

program.	To	change	the	sequence,	programmers	must	seed	the	random	number	generator

with	some	externally	obtained	(and	hopefully)	random	number.	The	seed	of	a	random

number	generator	is	the	number	that	the	generator	starts	with	when	applying	its	randomness

formula	for	computing	the	next	random	number.	To	set	the	seed,	we	call	the	srand()

function	with	an	integer	argument,	just	once,	at	the	beginning	of	the	program.	Afterwards,

the	random()	function	will	generate	a	sequence	of	random	numbers	based	on	the	seed.

Fortunately,	robots	have	lots	of	external	sources	for	seeds.	The	programmer	could	read

the	sound	sensor	and	use	that	value	as	the	seed	before	proceeding.	The	sequence	of	random

36

CHAPTER	5.	DECISIONS

numbers	would	then	depend	upon	the	sound	level	at	the	time	the	program	was	started.

In	a	noisy	room,	this	would	be	a	good	source	of	randomness.	However,	in	a	quiet	room,

the	reading	may	be	the	same	each	time,	which	gives	the	same	random	sequence	each	time

the	program	runs.	To	get	around	this,	there	are	lots	of	possibilities.	The	programmer

could	read	numbers	from	several	sensors	and	mix	the	values	together	in	a	formula.	A	very

reliable	random	seed	is	value	of	the	system	clock	when	the	program	is	executed.	With	this

method,	each	time	the	program	runs,	a	different	seed,	based	on	the	system	clock,	will	be

used	and,	in	turn,	a	different	sequence	of	random	numbers	will	be	generated.	The	reserved

variable,	nSysTime,	contains	an	ever-changing	integer	that	represents	the	number	of	elapsed

milliseconds	since	the	brick	was	powered	up.	More	details	about	system	time	are	available

in	the	RobotC	On-line	Support	on	the	left	side-bar	under	the	NXT	Functions	→	Timing	section.	This
method	is	so	reliable,	in	fact,	that	the	RobotC	developers	decided	to	make

it	the	default	behavior,	so	seeding	will	not	be	an	issue	in	RobotC–lucky	us.	Years	ago

developers	as	Silicon	Graphics	Inc	(SGI),	desperate	for	good	random	seeds,	used	live	images

of	lava	lamps	to	generate	truly	random	seeds3.

3http://en.wikipedia.org/wiki/Lavarand

5.5.	EXERCISES

37

5.5

Exercises

1.	What	is	wrong	with	the	expression	s=(y<=x<=z);?	What	is	the	programmer	trying	to

do?	How	would	you	fix	it?

2.	What	is	wrong	with	the	snippet	of	instruction	below?	What	is	the	programmer	trying

to	do?	How	would	you	fix	it?

✞

☎

if	(L	i	g	h	t	V	a	l	u	e	=	50)	{

n	x	t	D	i	s	p	l	a	y	S	t	r	i	n	g	(4	,	"	The	l	i	g	h	t	is	just	r	i	g	h	t	!	");

}

✝

✆

3.	Re-write	the	program	in	Listing	5.5	using	a	different	sensor,	different	condition,	and	different
messages.

http://www.robotc.net/support/nxt/MindstormsWebHelp/index.htm
http://en.wikipedia.org/wiki/Lavarand

4.	Write	an	if-statement	with	a	predicate	that	is:

(a)	true,	if	the	light	sensor	value	is	between	20	and	80	inclusive,	and	false	otherwise.

(b)	true,	if	the	sonar	sensor	value	is	strictly	less	than	10	and	the	touch	sensor	is

depressed,	and	false	if	either	of	these	conditions	is	not	satisfied.

(c)	false,	if	the	sound	sensor	value	is	greater	than	or	equal	to	20	or	the	touch	sensor

is	not	depressed,	and	true	in	all	other	cases.

5.	Given	the	available	mathematical	functions,	write	a	function	that	implements	the

tangent	of	an	angle	given	in	radians,	tan().

6.	Write	an	if-else	statement	that	executes	the	if-block	when	the	integer-type	variable	n

is	even	and	the	else-block	otherwise.

7.	Write	an	expression	that	returns	a	random	integer	between	-50	and	300	inclusively.

8.	Write	an	expression	that	returns	a	random	float	between	0	and	100.

9.	Write	a	function	called	CoinFlip()	that	returns	either	true	or	false	(return	type

bool)	with	a	50-50	probability.

38

CHAPTER	5.	DECISIONS

Chapter	6

Loops	and	Arrays

A	natural	extension	of	the	if-statement,	which	conditionally	executes	a	block	of	instruction,

is	the	loop,	which	repeats	a	block	of	instruction	until	condition	is	met.	There	are	two	kinds

of	loops	available	in	RobotC,	the	while-loop	and	the	for-loop.	As	we	will	see,	they	have	the

same	functionality,	but	for	the	sake	of	readability,	use	different	syntaxes.

6.1

While-loops

A	while-loop,	like	an	if-statement,	has	a	predicate	followed	by	a	block	of	instruction.	Unlike

the	if-statement,	however,	at	the	end	of	the	block,	the	program	execution	returns	to	the	top

of	the	loop,	the	predicate	is	checked	again	and	if	it	is	true,	the	block	is	executed	again.	The

block	is	executed	over	and	over	until,	for	some	reason,	the	predicate	becomes	false.	When

the	predicate	if	false,	the	block	is	skipped	and	the	program	resumes	at	the	line	after	the

closing	brace,	},	of	the	block.

A	while-loop	can	run	once,	10	times,	an	infinite	number	of	times	or	not	at	all	depending

on	the	behavior	of	the	predicate.	The	syntax	is	given	in	Listing	6.1.

✞

☎

w	h	i	l	e	([p	r	e	d	i	c	a	t	e])	{

//	block	of	i	n	s	t	r	u	c	t	i	o	n

}

✝

✆

Listing	6.1:	The	syntax	of	a	while-loop.	The	block	of	instruction	is	executed	until	the

predicate	becomes	false.

Listing	6.2	shows	a	program	that	shows	the	light	sensor	reading.	The	program	exits	when	the	touch
sensor	is	depressed.	Notice	that	the	touch	sensor	value,	a	Boolean-type,	can	be

used	as	the	predicate	of	the	while-loop	(in	this	case	negated).	Notice	also	the	use	of	the

wait10Msec()	function	to	delay	the	loop	execution	each	time.	Without	this	function	call,

the	display	is	updated	so	quickly	that	the	light	meter	number	flickers	and	is	hard	to	read.

In	Listing	6.3,	a	while-loop	checks	the	touch	sensor	over	and	over.	When	the	touch	sensor	is	pressed,
the	loop	exits	and	the	“balloon”	is	popped.

The	most	useful	aspect	of	a	while-loop	is	that	its	duration	is	indefinite.	On	the	flip

side,	the	most	aggravating	aspect	of	a	while-loop	is	that	its	duration	is	indefinite	(possibly

39

40

CHAPTER	6.	LOOPS	AND	ARRAYS

✞

☎

#	p	r	a	g	m	a	c	o	n	f	i	g	(Sensor	,	S1	,	trigger	,	s	e	n	s	o	r	T	o	u	c	h)

#	p	r	a	g	m	a	c	o	n	f	i	g	(Sensor	,	S2	,	light	,	s	e	n	s	o	r	L	i	g	h	t	I	n	a	c	t	i	v	e)

task	main	()	{

w	h	i	l	e	(!(S	e	n	s	o	r	V	a	l	u	e	[t	r	i	g	g	e	r]))	{

n	x	t	D	i	s	p	l	a	y	C	e	n	t	e	r	e	d	B	i	g	T	e	x	t	L	i	n	e	(2	,	"	%	d	"	,	S	e	n	s	o	r	V	a	l	u	e	[l	i	g	h	t]);

//	slows	the	loop	down	so	that	number	does	not	flicker

w	a	i	t	1	0	M	s	e	c	(5);

}

}

✝

✆

Listing	6.2:	This	program	displays	the	light	sensor	reading.	The	while-loop	repeatedly	polls

the	light	sensor	value	and	displays	it.	The	loop	exits	when	the	touch	sensor	is	depressed.

✞

☎

#	p	r	a	g	m	a	c	o	n	f	i	g	(Sensor	,	S1	,	trigger	,	s	e	n	s	o	r	T	o	u	c	h)

task	main	()	{

n	x	t	D	r	a	w	E	l	l	i	p	s	e	(18	,63	,78	,0);

//	loops	until	trigger	is	pressed

w	h	i	l	e	(!(S	e	n	s	o	r	V	a	l	u	e	[t	r	i	g	g	e	r]))	{}

e	r	a	s	e	D	i	s	p	l	a	y	();

n	x	t	D	i	s	p	l	a	y	B	i	g	S	t	r	i	n	g	A	t	(28	,40	,	"	Pop	!	");

w	a	i	t	1	0	M	s	e	c	(3	0	0)	;

}

✝

✆

Listing	6.3:	This	program	displays	a	“balloon”	that	pops	when	the	touch	sensor	is	depressed.

The	while-loop	halts	the	program	until	the	touch	sensor	is	pressed.	The	block	of	the	while-

loop	is	trivial.

6.2.	BREAK	STATEMENTS

41

infinite).	A	common	programming	error	is	to	build	a	while-loop	that	has	no	logical	end.	In

other	words,	the	programmer’s	exit	strategy	is	flawed.

Another	purpose	of	while-loops	in	the	context	of	robotics	is	the	detection	of	status	changes

in	sensors.	Consider	the	program	in	Listing	6.4	which	counts	the	number	of	times	the	touch	sensor	has
been	pressed.	The	first	inner	while-loop,	with	an	empty	block,	simply	puts	the

program	into	a	“holding	pattern”	until	the	trigger	is	pressed.	When	the	trigger	is	pressed,	a

counter	is	incremented	and	a	second	while-loop	with	an	empty	block	puts	the	program	into

a	holding	pattern	until	the	trigger	is	released.	The	outer	while-loop	has	a	trivial	predicate

with	literal	value	true.	This	loop	will	run	forever,	or	until	the	battery	runs	down,	or	until

we	press	the	orange	stop	button	on	the	NXT	brick.	This	program	is	nearly	always	in	one

holding	pattern	or	the	other.	Between	holding	patterns,	the	counter	is	incremented	(notice

too	that	it	has	been	initialized	to	zero)	and	the	display	is	updated.

✞

☎

#	p	r	a	g	m	a	c	o	n	f	i	g	(Sensor	,	S1	,	trigger	,	s	e	n	s	o	r	T	o	u	c	h)

task	main	()	{

int	c	o	u	n	t	=0;

n	x	t	D	i	s	p	l	a	y	C	e	n	t	e	r	e	d	B	i	g	T	e	x	t	L	i	n	e	(3	,	"	%	d	"	,	c	o	u	n	t);

w	h	i	l	e	(1)	{

//	hold	as	long	as	trigger	is	not	dep	ress	ed

w	h	i	l	e	(!(S	e	n	s	o	r	V	a	l	u	e	[t	r	i	g	g	e	r]))	{}

//	in	crem	ent	the	trigger	count	by	1

c	o	u	n	t	++;

//	hold	as	long	as	trigger	is	depr	ess	ed

w	h	i	l	e	((S	e	n	s	o	r	V	a	l	u	e	[t	r	i	g	g	e	r]))	{}

//	reset	display	and	display	the	current

e	r	a	s	e	D	i	s	p	l	a	y	();

n	x	t	D	i	s	p	l	a	y	C	e	n	t	e	r	e	d	B	i	g	T	e	x	t	L	i	n	e	(3	,	"	%	d	"	,	c	o	u	n	t);

}

}

✝

✆

Listing	6.4:	This	program	will	count	the	number	of	times	the	touch	sensor	has	been	depressed

and	display	the	count	on	the	screen.

6.2

Break	statements

In	addition	to	the	predicate	becoming	false,	a	second	method	of	ending	a	while-loop	is	the

break	statement.

If,	during	the	execution	of	the	while-loop	body	block,	a	break	state-

ment	is	encountered,	the	program	execution	immediately	jumps	to	the	first	instruction	after

the	while-loop	block–effectively	terminating	the	while-loop.	Typically,	the	break	statement

should	be	enclosed	in	some	kind	of	if-statement.	Otherwise,	the	loop	will	end	on	its	first

iteration.

42

CHAPTER	6.	LOOPS	AND	ARRAYS

It	is	important	to	note,	in	the	case	of	nested	loops,	that	the	break	statement	only	termi-

nates	the	inner-most	enclosing	loop,	while	outer	loops	may	continue.	A	break	statement	is

useful	if	one,	or	more,	conditions	arise	during	the	execution	of	the	loop	making	it	necessary

to	terminate	the	loop	immediately.	An	example	of	this	is	in	Listing	6.5.	Similar	to	Listing

6.4,	the	main	loop	in	Listing	6.5	terminates	when	the	count	reaches	20.	We	accomplish	this	by	inserting
an	if-statement	immediately	following	the	increment	of	the	count	variable.	Only

when	the	value	of	count	is	20	will	the	break	statement	be	executed.	This	would	be	useful

if	we	were	designing	a	devices	that	measured	how	quickly	someone	could	tap	the	trigger	20

times.

✞

☎

#	p	r	a	g	m	a	c	o	n	f	i	g	(Sensor	,	S1	,	trigger	,	s	e	n	s	o	r	T	o	u	c	h)

task	main	()	{

int	c	o	u	n	t	=0;

n	x	t	D	i	s	p	l	a	y	C	e	n	t	e	r	e	d	B	i	g	T	e	x	t	L	i	n	e	(3	,	"	%	d	"	,	c	o	u	n	t);

w	h	i	l	e	(1)	{

//	hold	as	long	as	trigger	is	not	dep	ress	ed

w	h	i	l	e	(!(S	e	n	s	o	r	V	a	l	u	e	[t	r	i	g	g	e	r]))	{}

//	in	crem	ent	the	trigger	count	by	1

c	o	u	n	t	++;

if	(c	o	u	n	t	==	20)	{	b	r	e	a	k	;	}

//	hold	as	long	as	trigger	is	depr	ess	ed

w	h	i	l	e	((S	e	n	s	o	r	V	a	l	u	e	[t	r	i	g	g	e	r]))	{}

//	reset	display	and	display	the	current

c	o	u	n	t	e	r	a	s	e	D	i	s	p	l	a	y	();

n	x	t	D	i	s	p	l	a	y	C	e	n	t	e	r	e	d	B	i	g	T	e	x	t	L	i	n	e	(3	,	"	%	d	"	,	c	o	u	n	t);

}

c	o	u	n	t	e	r	a	s	e	D	i	s	p	l	a	y	();

n	x	t	D	i	s	p	l	a	y	C	e	n	t	e	r	e	d	B	i	g	T	e	x	t	L	i	n	e	(1	,	"	20	Taps	R	e	a	c	h	e	d	");

n	x	t	D	i	s	p	l	a	y	C	e	n	t	e	r	e	d	B	i	g	T	e	x	t	L	i	n	e	(5	,	"	E	x	i	t	i	n	g	");

w	a	i	t	1	0	M	s	e	c	(3	0	0)	;

}

✝

✆

Listing	6.5:	This	program	will	count	the	number	of	times	the	tough	sensor	has	been	depressed

and	released	and	display	the	count	on	the	screen.	When	the	threshold	count	of	20	is	reached

the	program	exits	with	an	exit	message.

Notice	that	we	added	a	few	lines	of	instruction	after	the	while-loop	in	order	to	display

an	exit	message	indicating	that	the	20	threshold	has	been	reached.

6.3

Arrays

Loops	allow	the	programmer	to	execute	multitudes	of	instruction	and	manipulate	large

amounts	of	information	in	a	controlled	way.	Suppose	we	wanted	to	write	a	program	that

6.3.	ARRAYS

43

collected	light	measurements	once	every	15	minutes	for	a	whole	day.	Suppose	further	that	at

the	end	of	the	measurement	period	we	wanted	to	create	a	bar	graph	of	the	light	measurements

so	that	we	could	visualize	the	variation	of	the	light	measurements	throughout	the	day.	To

create	the	bar	graph,	we	would	need	to	be	able	to	retrieve	each	and	every	light	measurement

from	beginning	to	end.	That	is	a	total	of	96	values.

Typically,	the	way	that	we	store	and	retrieve	values	is	by	placing	them	into	variables.

It	would	be	tedious	to	have	to	declare	96	variables	in	a	program,	so	most	programming

languages,	RobotC	included,	allow	the	programmer	to	declare	arrays	of	variables.	An	array

is	an	indexed	collection	of	variables	of	the	same	datatype.	Indexed	means	that	each	variable

(also	called	an	element)	of	the	array	can	be	accessed	using	an	integer	index.

The	syntax	for	declaring	an	array	of	variables	is

✞

☎

[d	a	t	a	t	y	p	e]	[v	a	r	i	a	b	l	e	name][[SIZE]];

✝

✆

This	is	just	like	an	ordinary	variable	declaration,	but	the	variable	name	is	followed	by

an	integer	in	square	brackets	indicating	the	number	of	elements	associated	with	the	array

name.	In	the	case	of	our	light	measurements,	which	will	be	of	integer-type,	we	might	use

the	declaration

int	light_readings[96];

This	straightforward	declaration	quickly	gives	the	programmer	96	variables	of	the	form

light_readings[0],	light_readings[1],	light_readings[2],	.	.	.,	light_readings[95]

to	work	with.	Notice	that	the	first	element	of	the	array	has	index	0,	that	subsequent	element

indices	each	increment	by	one,	and	that	the	last	element	has	index	95.	Array	indices	always

start	at	0	and	end	with	an	index	one	less	than	the	declared	size	of	the	array.

Listing	6.6	shows	a	snippet	of	instruction	that	collects	light	measurements	every	15

minutes	for	24	hours.

The	program	initializes	an	integer-type	counter	variable,	count,	to	0,	and	declares	an

integer-type	array	of	96	elements	for	the	light	readings.	The	while-loop,	with	trivial	predicate,

takes	a	reading,	increments	the	counter,	and	pauses	for	15	minutes	before	repeating.	When

the	array	is	full,	the	break	statement	causes	the	loop	to	terminate.	Notice	that	we	may	use

the	variable	count	as	the	array	index.	It	starts	at	0	and	increments	by	1	each	time	through

the	loop	so	that	each	light	reading	is	assigned	to	a	different	array	element.	Notice	also	that

the	break	statement	occurs	after	the	counter	increment,	but	before	the	wait10Msec()	calls.

An	array	bound	overrun	occurs	if	you	attempt	to	use	an	out	of	range	index	to	access	an

array	element.	This	common	error	can	be	difficult	to	find	because	the	compiler	cannot	detect

it.	Such	errors	can	lead	to	unpredictable	behavior	in	the	same	way	that	uninitialized	variables

can.	Correcting	array	bound	overruns	involves	careful	inspection	of	all	array	operations	and

clearly	determining	the	value	of	any	index	variables.	For	example,	in	the	program	in	Listing

6.6,	if	we	simply	swap	the	order	of	the	counter	increment	and	the	break	statement,	we	will	introduce	an
array	bound	overrun.	Checking	the	index	before	incrementing	will	lead	to	an

attempt	to	use	the	illegal	value	96	as	an	array	index	the	next	time	through	the	loop.

44

CHAPTER	6.	LOOPS	AND	ARRAYS

✞

☎

#	p	r	a	g	m	a	c	o	n	f	i	g	(Sensor	,	S1	,	l	i	g	h	t	s	e	n	s	o	r	,	s	e	n	s	o	r	L	i	g	h	t	I	n	a	c	t	i	v	e)	task	main	()	{

int	c	o	u	n	t	=0;

int	l	i	g	h	t	_	r	e	a	d	i	n	g	s	[9	6]	;

w	h	i	l	e	(true)	{

l	i	g	h	t	_	r	e	a	d	i	n	g	s	[c	o	u	n	t]	=	S	e	n	s	o	r	V	a	l	u	e	[l	i	g	h	t	s	e	n	s	o	r];

c	o	u	n	t	++;

if	(c	o	u	n	t	==	95)	{	b	r	e	a	k	;	}

w	a	i	t	1	0	M	s	e	c	(3	0	0	0	0)	;

w	a	i	t	1	0	M	s	e	c	(3	0	0	0	0)	;

w	a	i	t	1	0	M	s	e	c	(3	0	0	0	0)	;

}

//

}

✝

✆

Listing	6.6:	This	program	uses	a	while-loop	to	collect	light	sensor	readings	every	15	min-

utes	for	24	hours	and	store	the	data	in	the	array	light_readings.	The	three	calls	to

wait10Msec(30000)	are	required	because	the	wait10Msec()	function	can	only	accept	argu-

ments	that	are	less	than	32767.	To	wait	15	minutes	requires	an	argument	of	90000	which	is

too	large.

6.4

For-loops

For-loops	are	syntactically	designed	to	be	used	with	arrays.	Though	the	behavior	of	a	for-

loop	may	be	duplicated	by	a	while-loop,	for	readability,	programmers	typically	use	for-loops

when	the	intention	of	the	loop	is	to	manage	an	array.

✞

☎

for	([i	n	i	t	i	a	l	i	z	a	t	i	o	n];	[c	o	n	d	i	t	i	o	n];	[i	n	c	r	e	m	e	n	t]

)	{

//	block	of	i	n	s	t	r	u	c	t	i	o	n

}

✝

✆

Listing	6.7:	The	syntax	of	a	for-loop.	The	block	of	instruction	is	executed	as	long	as	the

condition	is	true.

When	a	for-loop	is	first	encountered,	the	[initialization]	instruction	is	executed	and

immediately	thereafter	the	[condition]	statement.	If	the	[condition]	statement	is	true,

the	for-loop	body	block	is	executed.	At	the	end	of	the	block,	program	execution	returns

to	the	[increment]	statement	and	immediately	thereafter	the	[condition]	statement.	If

the	[condition]	statement	is	true,	the	block	is	executed	again	and	the	program	execution

returns	to	the	[increment]	statement.	The	[initialization]	statement	is	only	executed

once	when	the	program	execution	first	encounters	the	for-loop.	Thereafter,	the	[increment]

and	[condition]	statements	are	executed	until	the	[condition]	statement	becomes	false.

At	first,	the	for-loop	operation	seems	overly	complicated,	but	consider	the	code	in	Listing

6.8	which	shows	a	typical	application	of	for-loop	syntax.

6.5.	TWO-DIMENSIONAL	ARRAYS

45

✞

☎

task	main	()	{

int	i	;

int	p	e	r	f	e	c	t	_	s	q	u	a	r	e	s	[1	0]	;

for	(i	=0;	i	<=9;	i	++)	{

p	e	r	f	e	c	t	_	s	q	u	a	r	e	s	[i]	=	i	*	i	;

}

//

}

✝

✆

Listing	6.8:

A	simple	for-loop	that	stores	the	first	10	perfect	squares	in	the	array

perfect_squares.

In	this	case,	the	for-loop	controls	the	value	of	the	the	array	index,	i,	by	initializing	it	to

0	and	incrementing	it	by	1	through	the	values	0	through	9.	In	the	loop	body,	we	assign	i*i

to	the	ith	array	element.	After	the	loop	is	finished,	the	perfect_squares	array	contains

(0,	1,	4,	9,	.	.	.	,	81).

Listing	6.9	shows	a	program	that	will	scroll	through	a	list	of	the	lower-case	letters	of	the	alphabet	with	a
quarter-second	delay	between	each	letter.

✞

☎

task	main	()	{

int	i	;

char	a	l	p	h	a	b	e	t	[2	6]	;

for	(i	=0;	i	<	=	2	5	;	i	++)	{

a	l	p	h	a	b	e	t	[i]	=	’	a	’	+	i	;

}

for	(i	=0;	i	<	=	2	5	;	i	++)	{

n	x	t	S	c	r	o	l	l	T	e	x	t	("	%	c	"	,	a	l	p	h	a	b	e	t	[i]);

w	a	i	t	1	0	M	s	e	c	(2	5)	;

}

}

✝

✆

Listing	6.9:	Scrolls	through	the	letters	of	the	alphabet.	The	first	for-loop	fills	an	array	with

the	letters	of	the	alphabet.	The	second	displays	them	to	the	screen	with	a	quarter-second

delay	between	each	new	letter.

Notice	the	unusual	addition	of	an	integer	and	a	character	assigned	to	the	alphabet	array.

This	is	a	useful	method	of	manipulating	characters	via	their	positions	in	the	alphabet.	It

works	via	the	notion	of	casting.

6.5

Two-Dimensional	Arrays

A	two-dimensional	(2D)	array	is	a	“grid”	of	elements.	While	there	is	very	little	that	a	2D

array	can	do	that	an	ordinary	array	cannot,	sometimes	information	is	conceptually	easier	to

46

CHAPTER	6.	LOOPS	AND	ARRAYS

represent	as	a	2D	array.	For	example,	the	NXT	display	in	Figure	3.1	is	naturally	suited	to	a	2D	array
representation.	The	syntax	for	declaring	a	2D	array	is

✞

☎

[d	a	t	a	t	y	p	e]	[v	a	r	i	a	b	l	e	name][[S	I	Z	E	1]][[S	I	Z	E	2]];

✝

✆

More	specifically,	an	array	that	might	represent	the	NXT	display	would	be

✞

☎

bool	s	c	r	e	e	n	[1	0	0]	[6	4]	;

✝

✆

Elements	that	are	true	indicate	pixels	that	that	are	on.	Elements	that	are	false	indicate

pixels	that	are	off.	To	represent	a	blank	screen,	we	set	all	of	the	elements	to	false

✞

☎

bool	s	c	r	e	e	n	[1	0	0]	[6	4]	;

for	(i	=0;	i	<	1	0	0	;	i	++)	{

for	(j	=0;	j	<64;	j	++)	{

s	c	r	e	e	n	[i][j]=	f	a	l	s	e	;

}

}

✝

✆

To	represent	a	display	with	a	horizontal	line	across	the	middle	of	the	display

✞

☎

bool	s	c	r	e	e	n	[1	0	0]	[6	4]	;

for	(i	=0;	i	<	1	0	0	;	i	++)	{

s	c	r	e	e	n	[i]	[3	2]	=	true	;

}

✝

✆

Notice	that	indices	start	at	zero,	just	like	with	ordinary	arrays.	We	see	a	nice	correspondence

between	the	pixel	coordinate,	(i,j),	and	the	2D	array	element	[i][j].	A	programmer	can

make	a	whole	assortment	of	changes	to	the	screen	array	and	then	use	it	to	“paint”	the	screen

all	at	once	by	“visiting”	every	array	element	and,	if	true,	turning	on	the	corresponding	pixel.

✞

☎

for	(i	=0;	i	<	1	0	0	;	i	++)	{

for	(j	=0;	j	<64;	j	++)	{

if	(s	c	r	e	e	n	[i][j])	{	n	x	t	S	e	t	P	i	x	e	l	(i	,	j);	}

}

}

✝

✆

6.6.	EXERCISES

47

6.6

Exercises

1.	Under	what	circumstances	might	the	program	in	Listing	6.4	miss	a	trigger	count?

2.	Consider	the	alternative	below	to	the	trigger	count	program	in	Listing	6.4.

✞

☎

#	p	r	a	g	m	a	c	o	n	f	i	g	(Sensor	,	S1	,	trigger	,	s	e	n	s	o	r	T	o	u	c	h)

task	main	()	{

int	c	o	u	n	t	=0;

n	x	t	D	i	s	p	l	a	y	C	e	n	t	e	r	e	d	B	i	g	T	e	x	t	L	i	n	e	(3	,	"	%	d	"	,	c	o	u	n	t);

w	h	i	l	e	(1)	{

if	(S	e	n	s	o	r	V	a	l	u	e	[t	r	i	g	g	e	r])	{	c	o	u	n	t	++;	}

e	r	a	s	e	D	i	s	p	l	a	y	();

n	x	t	D	i	s	p	l	a	y	C	e	n	t	e	r	e	d	B	i	g	T	e	x	t	L	i	n	e	(3	,	"	%	d	"	,	c	o	u	n	t);

}

}

✝

✆

Will	it	give	an	accurate	trigger	count?	Why	or	why	not?

3.	Write	a	program	that	uses	the	sound	sensor	to	briefly	display	(1	second)	a	message	(or

graphic)	when	a	loud	noise	is	detected.

4.	Use	the	PlayImmediateTone(),	as	detailed	in	the	RobotC	On-line	Support	on	the	left	side-bar	under
the	NXT	Functions	→	Sounds	section,	to	play	a	tone	whose	frequency

is	proportional	to	the	intensity	of	light	being	measured	by	the	light	sensor.	(For	added

information,	display	the	light	measurement	on	the	screen.	Also,	a	small	loop	delay

may	be	required	for	this	to	work	well.)

5.	Write	a	snippet	of	code	that	declares	a	10-element	integer	array	and	fills	it	with	random

integers	between	-100	and	100	inclusively.

6.	In	computer	science,	a	queue	is	a	data	structure	that	allows	data	to	be	added	at	the

end	of	the	array	and	removed	from	the	front.	Queues	are	usually	stored	in	arrays.

To	add	a	value	to	the	queue	simply	assign	it	to	the	next	open	array	element.	This

assumes	that	you,	the	programmer,	are	keeping	track	of	how	many	elements	are	in	the

queue	with	a	counter	variable	like	QueueSize	that	you	increment	when	an	element	is

added	and	decrement	when	an	element	is	removed.	To	remove	an	element,	copy	all	the

elements	forward	in	the	array,	e.g.	assign	element	1	to	element	0,	element	2	to	element

1,	etc.

Write	a	for-loop	that	shifts	n	elements	in	an	array	forward,	effectively	deleting	element

0	from	the	queue.

7.	Write	a	snippet	of	code	that	swaps	the	values	in	the	ith	and	jth	elements	of	an	array.

48

CHAPTER	6.	LOOPS	AND	ARRAYS

8.	Write	a	program	that	uses	the	sonar	sensor	to	count	the	number	of	times	a	hand	is

waved	before	it	in	close	proximity.	Include	a	break	statement	that	terminates	the

loop	after	20	“waves”.	(Hint:	For	this	program,	you	will	have	to	do	some	preliminary

testing	to	see	how	the	values	of	the	sonar	change	when	a	hand	is	waved	in	front	of	it.

You	will	then	need	to	use	those	explicit	values	to	construct	predicates	for	the	holding

http://www.robotc.net/support/nxt/MindstormsWebHelp/index.htm

while-loops.)

9.	In	Listing	6.6,	why	is	it	important	that	the	break	statement	be	placed	precisely	where	it	is	placed?	In
your	response,	consider	other	placements,	e.g.	before	count++;	or	after

the	calls	to	wait10Msec().

10.	Write	a	program	that	displays	a	scrolling	bar	graph	of	the	light	sensor	values	sampled

at	100	millisecond	intervals.

11.	Write	a	program	that	tests	the	reaction	time	of	the	user.	Users	are	instructed	that

when	the	test	starts	they	are	to	wait	for	some	visual	cue	to	appear	(after	some	random

length	of	time	between	0.5s	and	10.0s)	and	to	press	the	trigger	as	soon	as	they	see	it.

The	program	then	reports	the	reaction	time	in	seconds	(to	2	significant	digits)	along

with	some	(perhaps	snarky)	comment	on	the	time.

Chapter	7

Motors	and	Motion

Up	to	this	point,	we	have	only	discussed	the	sensors	and	the	display.	Sensors	provide	infor-

mation	to	the	robot	the	environment.	The	screen	provides	information	to	the	environment.

So	far	everything	has	been	quite	passive.	Now	it	is	time	to	get	proactive!	The	NXT	kit

contains	3	motors.	The	motors	allow	the	robot	to	change	its	environment–to	go	from	a

passive	observer	to	an	active	participant.

7.1

Motors

The	NXT	motors	are	sophisticated	devices	that	not	only	provide	a	way	to	apply	force,	but

also	act	as	rotational	sensors–able	to	measure	rotation	to	the	nearest	of	360◦.	Most	of	the

motor	control	is	done	through	the	use	of	a	collection	of	special	reserved	arrays.

7.1.1

Motor	Arrays

Motors	are	connected	to	the	NXT	brick	through	the	A,	B,	or	C	ports	only	(not	the	numbered

ports).	Motors	are	connected	and	identified	to	your	program	in	the	same	way	that	sensors

are	using	the	“Motors	and	Sensors	Setup”	window.	It	is	important	that	the	programmer

know	which	motor	is	connected	to	which	lettered	port.

When	motors	are	connected	to	the	NXT	brick	and	identified	to	the	program,	the	program

maintains	two	important	arrays	associated	with	the	motors	summarized	in	Table	7.1.

Array

Description

motor[]

speed	array,	each	integer	element	(one	for	each	motor)

ranges	from	-100	to	100,	negative	values	reverse	direction

nMotorEncoder[]

encoder	array,	each	integer	element	(one	for	each	motor)

indicates	the	number	of	degrees	of	rotation	relative	to

some	zero	that	the	programmer	sets

Table	7.1:	Two	important	motor	arrays	and	their	purposes.

49

50

CHAPTER	7.	MOTORS	AND	MOTION

The	motor[]	array	is	a	3-element	integer	array	with	motor[0]	corresponding	to	Port	A,

motor[1]	to	Port	B,	and	motor[2]	to	Port	C.	The	“Motors	and	Sensors	Setup”	window,

among	other	things,	sets	up	meaningful	aliases	for	the	array	indices	0,	1,	and	2,	to	make

your	program	more	readable.

At	the	start	of	the	program,	the	motor	array	elements	are	all	0	(motors	off).	Assigning	a

non-zero	value	between	-100	and	100	to	a	motor	array	element	instantly	turns	on	the	motor

to	that	power	and	in	the	direction	specified	by	the	sign.	The	motor	will	remain	on,	at	that

power,	and	in	that	direction	for	the	duration	of	the	program	or	until	the	programmer	changes

the	value.

The	nMotorEncoder[]	array	elements	have	the	same	correspondence	to	Ports	A,	B,	and

C	as	the	motor[]	array.	Each	integer	element	indicates	the	number	of	degrees	of	rotation	of

the	motor	since	the	beginning	of	the	program	or	since	the	programmer	last	set	the	element

to	zero.	For	example,	a	value	of	360◦	indicates	that	the	motor	has	completed	one	full	turn,

720◦	indicates	two	turns,	765	indicate	two	and	a	quarter	turns.

Other	motor	arrays,	as	described	in	the	RobotC	On-line	Support	on	the	left	side-bar	under	the	NXT
Functions	→	Motors	section,	allow	the	programmer	to	control	more	subtle

aspects	of	the	motors.

7.1.2

Basic	Motor	Control

The	timing	and	control	of	motor	actions	can	be	tricky.	For	example,	consider	the	snippet

✞

☎

#	p	r	a	g	m	a	c	o	n	f	i	g	(Motor	,	motorC	,	Left	,	t	m	o	t	o	r	N	o	r	m	a	l	,	P	I	D	C	o	n	t	r	o	l)

task	main	()	{

m	o	t	o	r	[Left]	=	50;

}

✝

✆

This	program	will	exit	immediately	leaving	no	time	for	the	motor	to	turn.	Adding	a	wait

command,

✞

☎

#	p	r	a	g	m	a	c	o	n	f	i	g	(Motor	,	motorC	,	Left	,	t	m	o	t	o	r	N	o	r	m	a	l	,	P	I	D	C	o	n	t	r	o	l)

http://www.robotc.net/support/nxt/MindstormsWebHelp/index.htm

task	main	()	{

m	o	t	o	r	[Left]	=	50;

w	a	i	t	1	M	s	e	c	(1	0	0	0)	;

}

✝

✆

will	cause	the	motor	to	run	for	1	second	at	half	power.

7.2

Turning	and	Motor	Synchronization

A	robot	with	two	drive	wheels	and	a	trailing	coast	wheel	(a	tri-bot)	can	be	made	to	turn

by	driving	the	two	drive	wheels	at	different	rates.	Consider	the	circular	track	in	Figure

7.2.	TURNING	AND	MOTOR	SYNCHRONIZATION

51

w

r

Figure	7.1:	A	two-wheel	drive	circular	path	of	radius	r	and	trackwidth	w.

7.1	traced	out	by	the	two	drive	wheels	of	the	the	tri-bot.	A	simple	geometric	calculation	determines	the
relative	rates	at	which	the	two	drive	wheels	should	turn	in	order	to	move

along	this	path	(the	dotted	blue	line).	We	assume	that	the	radius	of	the	path	is	r	and	the

trackwidth	(the	distance	from	center	of	the	point	of	contact	of	the	left	wheel	with	the	ground

and	the	right	wheel	with	the	ground)	is	w.	Assume	that	the	tri-bot	travels	around	the	track

in	t	seconds.	The	left	wheel	(inner	circle)	travels	a	distance	of	2π(r	−	w/2)–the	circumference

of	the	inner	circle,	while	the	right	wheel	travels	a	distance	of	2π(r	+	w/2)–the	circumference

of	the	outer	circle.	The	speeds	of	the	left	wheel,	sL,	and	the	right	wheel,	sR	are	given	by

2π(r	−	w/2)

sL	=

t

and

2π(r	+	w/2)

sR	=

.

t

Consider	the	ratio	of	these	two	speeds

sL

r	−	w/2

=

.

(7.1)

sR

r	+	w/2

As	long	as	this	ratio	is	preserved,	the	tri-bot	will	move	along	the	circular	track	of	radius	r.

For	example,	suppose	a	tri-bot	has	a	trackwidth	of	w	=	10cm	and	we	would	like	it	to

move	along	a	circular	track	of	radius	r	=	20cm.	Our	formula	suggests	that	we	run	the

52

CHAPTER	7.	MOTORS	AND	MOTION

motors	with	a	speed	ratio	of	15	=	3	.	Of	course	there	are	many	different	power	settings	for

25

5

the	motors	that	yield	this	ratio.	In	fact,	any	pair	of	left	and	right	motor	power	settings	that

reduce	to	this	fraction	will	cause	the	tri-bot	to	move	along	this	track	of	radius	20cm.	The

only	difference	will	be	in	how	fast	the	robot	moves	along	the	track.	A	ratio	of	15	:	25	will

move	only	half	as	fast	as	a	ratio	of	30	:	50.

RobotC	provides	convenient	commands	for	controlling	a	pair	of	motors.	Listing	7.1	shows	how	to
control	the	relative	speeds	of	the	two	motors.

✞

☎

#	p	r	a	g	m	a	c	o	n	f	i	g	(Motor	,	motorC	,	Left	,	t	m	o	t	o	r	N	o	r	m	a	l	,	P	I	D	C	o	n	t	r	o	l)

#	p	r	a	g	m	a	c	o	n	f	i	g	(Motor	,	motorA	,	Right	,	t	m	o	t	o	r	N	o	r	m	a	l	,	P	I	D	C	o	n	t	r	o	l)

task	main	()	{

n	S	y	n	c	e	d	M	o	t	o	r	s	=	s	y	n	c	h	A	C	;	//	Left	motor	slaved	to	Right	motor

n	S	y	n	c	e	d	T	u	r	n	R	a	t	i	o	=	+60;	//	Left	motor	turns	60%	of	right	motor

m	o	t	o	r	[R	i	g	h	t]	=	50;	//	Right	motor	moves	at	50%	power

//	Left	motor	a	u	t	o	m	a	t	i	c	a	l	l	y	moves	at	30%

//	because	of	synch	and	synch	ratio	.

w	a	i	t	1	M	s	e	c	(1	0	0	0)	;

}

✝

✆

Listing	7.1:	This	program	will	drive	a	tri-bot	with	trackwidth	10cm	around	a	circle	of	radius

20cm.

The	left	motor	is	synchronized	to	the	right	motor	with	the	instruction,	nSyncedMotors

=	synchAC;.	The	relative	speed	of	the	left	motor	to	the	right	motor	is	set	at	+60%	(roughly

3	:	5)	with	the	instruction	nSyncedTurnRatio	=	+60;.	Subsequently,	when	the	right	motor

is	activated	with	the	power	50,	the	left	motor	is	automatically	activated	with	a	power	that

is	60%	of	the	right’s–in	this	case,	roughly	30.	With	the	speed	ratio	at	3	:	5,	the	tri-bot	will

move	around	a	track	of	radius	20cm	for	1	second.

In	the	previous	example,	we	assumed	that	the	center	of	the	circle	about	which	the	robot

turned	was	to	the	left	(or	right)	of	the	robot.	Suppose	the	center	of	the	circle	is	between	the

drive	wheels	(under	the	robot)	as	in	Figure	7.2.	This	situation	occurs	when	r	<	w/2.

Notice	that	in	this	case,	the	numerator	of	equation	(7.1)	is	negative	indicating	that	the	left	wheel	turns	in
the	opposite	direction	of	the	right	wheel.	The	path	of	the	left	wheel	is

indicated	by	the	inside	black	circle.	The	path	of	the	right	wheel	is	indicated	by	the	outside

black	circle.	The	arrows	show	the	direction	of	travel	and	starting	point	of	each	wheel.

The	dotted	blue	line	shows	the	path	of	the	midpoint	of	the	distance	between	the	wheels.

Additional	information	on	motor	synchronization	is	available	here.1

7.3

Distance	and	Motor	Encoders

Through	synchronization,	we	now	have	a	method	of	executing	accurate	and	precise	turns,

but	lack	a	method	of	traveling	accurate	and	precise	distances.	In	this	section,	we	continue	to

1http://carrot.whitman.edu/Robots/PDF/Synching%20Motors.pdf

7.3.	DISTANCE	AND	MOTOR	ENCODERS

53

r

w

2

Figure	7.2:	A	two-wheel	drive	circular	path	of	radius	r	and	trackwidth	w	in	which	r	<	w/2.

In	this	case,	the	wheels	turn	at	different	rates	in	opposite	directions	and	the	blue	dot	tracks

the	circle.	The	center	of	rotation,	the	black	dot,	is	between	the	drive	wheels.

use	the	tri-bot	model.	Controlling	distance	requires	precise	information	about	the	effective

circumference	of	the	drive	wheels	and	the	ability	to	specify	the	angle	of	rotation	of	the

wheels.

7.3.1

Circumference

http://carrot.whitman.edu/Robots/PDF/Synching%20Motors.pdf

To	determine	the	circumference	of	a	drive	wheel,	we	could	simply	remove	it,	roll	it	on	a	piece

of	scrap	paper	through	one	complete	rotation,	marking	the	start	and	end,	and	measure	the

distance	between	them.	Or,	we	could	wrap	a	piece	of	thread	around	the	wheel	and	measure

its	length.	Or,	we	could	measure	the	radius,	r,	of	the	wheel	and	use	the	circumference

formula

C	=	2πr.

(7.2)

One	problem	with	these	approaches	is	that	the	wheel	has	been	removed	from	the	context

in	which	it	will	be	used.	For	example,	a	weight	bearing	wheel	will	not	travel	as	far	in

one	rotation	as	an	unloaded	wheel.	A	more	accurate	method	would	be	to	measure	the

circumference	of	the	wheel	in	context.	The	effective	circumference	is	the	circumference

of	the	wheel	in	the	context	in	which	it	will	be	used.

To	measure	the	effective	circumference,	we	will	use	the	motor	encoders	to	drive	the	wheels

in	a	straight	line	through	a	set	number	of	rotations	and	measure	the	distance	traveled.	The

motor	encoders	measure	the	number	of	degrees	of	rotation	of	a	motor	to	the	nearest	of	360◦.

As	discussed	in	Section	7.1.1,	the	3-element	array,	nMotorEncoder[],	always	contains	the	current
number	of	degrees	the	corresponding	motor	has	turned	starting	since	the	program

started	or	since	the	value	was	last	reset	to	zero.	The	value	is	a	signed	16-bit	integer	with	the

sign	indicating	the	direction	of	rotation.	For	example,	if	the	wheel	goes	forward	for	one	full

rotation	and	then	reverses	for	one	full	rotation,	the	motor	encoder	value	for	that	wheel	in

the	end	will	be	unchanged.	Note	also	that	the	range	of	allowable	encoder	values	goes	from

54

CHAPTER	7.	MOTORS	AND	MOTION

-32768	to	32767	degrees.	This	corresponds	to	about	91	rotations	in	either	the	forward	or

reverse	directions.	In	long	running	programs,	the	programmer	should	periodically	reset	the

encoder	values	to	zero	to	avoid	an	overflow.

Consider	the	instructions	in	Listing	7.2.	This	program	will	cause	the	robot	to	move	forward	in	a	straight
line	through	exactly	to	rotations	of	the	drive	wheels.	The	first	two

✞

☎

#	p	r	a	g	m	a	c	o	n	f	i	g	(Motor	,	motorC	,	Left	,	t	m	o	t	o	r	N	o	r	m	a	l	,	P	I	D	C	o	n	t	r	o	l)

#	p	r	a	g	m	a	c	o	n	f	i	g	(Motor	,	motorA	,	Right	,	t	m	o	t	o	r	N	o	r	m	a	l	,	P	I	D	C	o	n	t	r	o	l)

task	main	()	{

n	S	y	n	c	e	d	M	o	t	o	r	s	=	s	y	n	c	h	A	C	;	//	Left	motor	slaved	to	right	motor

n	S	y	n	c	e	d	T	u	r	n	R	a	t	i	o	=	+	1	0	0	;	//	Left	right	motors	same	rate

n	M	o	t	o	r	E	n	c	o	d	e	r	[R	i	g	h	t]=0;	//	Reset	right	motor	encoder	to	0

n	M	o	t	o	r	E	n	c	o	d	e	r	T	a	r	g	e	t	[R	i	g	h	t]	=	720;	//	Stops	after	720	degs

m	o	t	o	r	[R	i	g	h	t]	=	50;	//	Right	motor	moves	at	50%	power

w	h	i	l	e	(n	M	o	t	o	r	R	u	n	S	t	a	t	e	[R	i	g	h	t]==	r	u	n	S	t	a	t	e	R	u	n	n	i	n	g){}	//	Hold

}

✝

✆

Listing	7.2:	This	program	will	cause	the	tri-bot	to	move	forward	in	a	straight	line	through

exactly	two	rotations	of	the	drive	wheels.

instructions	synchronize	the	motors	and	cause	them	to	run	at	the	same	speed.	Next,	we	set

the	motor	encoder	value	for	the	right	motor	to	zero	and	use	the	nMotorEncoderTarget[]

array	to	set	a	precise	stopping	point	at	720◦.	Setting	the	target	does	not	start	the	motor,

but	it	does	cause	the	motor	to	stop	when	the	motor	encoder	value	reaches	720◦.	We	then

start	the	motor	at	50%	speed	and	use	a	while-loop	to	hold	the	program	execution	until	the

rotations	are	complete.

It	is	reasonable	to	wonder	why,	in	Listing	7.2,	we	do	not	omit	the	encoder	target	instruction	and	simply
stop	the	motors	by	setting	the	motor	power	to	0	after	the	while-loop	exits.

Indeed,	this	approach	does	work.	However,	particularly	at	high	speeds,	stopping	in	this

manner	can	be	quite	rough	causing	the	robot	to	rock	back	and	forth	and	perhaps	overshoot

(or	undershoot)	the	desired	number	of	rotations.

Setting	the	nMotorEncoderTarget[]	causes	the	motor	to	slow	to	a	stop	at	the	specified

encoder	value	in	a	precise	way	regardless	of	the	motor	speed.	It	should	be	noted	that	the

target	ignores	the	direction	of	rotation	so	that	a	value	of	720◦	will	stop	the	motors	at	either

±720◦.	The	sign	of	the	target	value	does	play	a	role	however.	Using	a	negative	value	disables

the	precision	stopping	algorithm	and	is	akin	to	the	rough	stopping	method	alluded	to	earlier.

There	are	times	when	each	is	appropriate.	Using	the	precise	stopping	algorithm	will

drain	more	power	from	the	batteries	in	the	long	run.	In	the	case	of	attempting	to	deter-

mine	the	effective	circumference	of	a	robot’s	wheels,	the	precise	stopping	algorithm	is	more

appropriate.

7.3.	DISTANCE	AND	MOTOR	ENCODERS

55

7.3.2

Precise	Distances

Let	us	consider	Figure	7.1	again.	We	know	how	to	move	along	a	circular	path,	but	how	do	we	move	a
specific	distance?	Suppose	we	want	to	travel	half-way	around	the	circle.	Or,	a

quarter-way	around.	Or,	47◦	around.	We	can	do	so	using	the	motor	encoder	and	the	effective

circumference.	Let	c	be	the	effective	circumference	of	a	tri-bot	wheel.	Suppose	we	want	to

travel	through	an	angle	θ	(in	radians)	counterclockwise	around	the	path	of	radius	r	as	in

Figure	7.1.	The	length,	L,	of	the	circular	arc	of	radius	r	and	angle	θ	is	given	by	the	formula	L	=	θr.

However,	to	do	so	the	right	wheel	must	travel	a	distance,	LR,	slightly	longer

LR	=	θ(r	+	w/2).

Hence,	the	right	wheel	must	rotate	LR/c	times	in	order	to	move	the	robot	the	distance	L

along	the	dotted	blue	path.	In	terms	of	degrees,	DR,	the	encoder	target	should	be

θ(r	+	w/2)

DR	=

·	360◦,

c

where	θ	is	given	in	radians.

If	we	are	moving	clockwise,	then	we	use	the	left	motor	to	control	movement	and	the	same

formula	applies	for	computing	the	encoder	target	of	the	left	motor.

7.3.3

Named	Constants

It	is	clear	that	many	of	the	results	presented	in	this	chapter	will	depend	upon	the	exact

physical	dimensions	of	the	robot.	For	example,	we	may	have	one	tri-bot	with	a	trackwidth,

w	=	12.5cm,	and	second	with	a	trackwidth,	w	=	14cm,	and	wish	to	run	the	same	path

program	on	both.	To	run	the	program	on	the	second	robot,	the	programmer	has	to	go

through	the	program	line-by-line	and	replace	each	occurrence	of	12.5cm	with	14cm.	This

kind	of	editing	can	be	tedious	and	error	prone.	RobotC,	as	well	as	most	other	languages,

provides	a	way	of	addressing	this	issue.

Instead	of	using	the	“naked”	number,	12cm,	throughout	the	program,	a	better	practice	is

to	declare	a	global	constant	at	the	top	of	the	program	file,	outside	of	any	program	block,	and

to	give	the	constant	a	meaningful	name.	A	constant	can	have	any	datatype	and	is	declared

with	the	syntax:

✞

☎

c	o	n	s	t	[d	a	t	a	t	y	p	e]	[C	O	N	S	T	A	N	T	NAME]	=	[v	a	l	u	e];

✝

✆

Putting	the	const	keyword	at	the	front	of	an	ordinary	declaration	causes	the	variable	to	be

treated	as	a	constant.	This	means	that	the	compiler	will	produce	an	error	if	the	programmer

inadvertently	tries	to	change	the	value	of	the	constant	by	assignment	or	passing	by	reference

into	a	function.	Because	of	this,	the	value	of	the	constant	must	be	assigned	at	declaration.

The	naming	rules	are	the	same	as	for	ordinary	variables.

In	the	case	of	our	trackwidth	constant,	we	might	use	the	declaration:

56

CHAPTER	7.	MOTORS	AND	MOTION

✞

☎

c	o	n	s	t	f	l	o	a	t	T	R	A	C	K	W	I	D	T	H	=	1	2	.	5	;

✝

✆

In	this	example,	we	find	another	good	practice,	that	of	capitalizing	constant	names.	This

helps	to	differentiate	constants	visually	from	ordinary	variables	in	the	program.	We	see	that

if	the	programmer	uses	a	named	constant	throughout	a	program	and	places	the	declaration

at	the	very	top	of	the	program	file,	then	it	is	easy	to	“port”	the	program	to	the	second	robot

with	trackwidth	14cm.	Changing	the	12.5	in	the	constant	declaration	to	a	14	does	the	whole

job–no	searching	and	replacing	throughout	the	file.	Furthermore,	using	a	named	constant

in	place	of	a	naked	constant	makes	a	program	more	readable,	e.g.	we	see	TRACKWIDTH	which

means	something	instead	of	just	14.

7.4.	EXERCISES

57

7.4

Exercises

1.	Suppose	a	tri-bot	has	a	trackwidth	of	w.	Derive	a	formula	for	the	ratio	of	motor	speeds

if	the	robot	is	to	travel	around	a	circle	of	radius	r	in	the	clockwise	direction	with	its

right	wheel	on	the	circle.

2.	Determine	the	effective	circumference	of	the	drive	wheels	of	your	robot.	Do	so	by

writing	a	short	program	to	turn	the	wheels	2	or	3	rotations	and	measuring	the	distance

traveled	by	the	robot.	Divide	the	distance	by	the	number	of	rotations	to	determine

the	circumference	of	the	wheels.	Do	several	trials.	(Why	is	it	better	to	do	2	or	3	full

rotations	and	several	trials	instead	of	just	one?)

Does	the	speed	at	which	the	motors	turn	affect	your	results?	What	about	the	coast

vs.	brake	modes?

3.	Discuss	equation	(7.1)	in	the	case	when	r	=	0.	When	r	=	w/2.

4.	Use	the	results	from	Exercise	2	to	write	a	program	that	causes	your	robot	to	move	in	a

“figure	eight”	path	comprised	of	two	circular	paths	of	radius	20cm	placed	side-by-side.

58

CHAPTER	7.	MOTORS	AND	MOTION

Chapter	8

Tasks	and	Sounds

With	the	possibility	of	needing	to	monitor	several	input	sensors,	we	introduce	the	notion	of

tasks.	Each	task	is	an	independent	program	(think	task	main()),	and,	more	importantly,

the	tasks	can	run	concurrently.	Concurrent	processes,	also	known	as	threads,	involve	forking

the	program	execution	into	several	parallel	threads	that	each	run	independently.

8.1

Tasks

We	have	used	the	task	syntax	all	along	when	writing	our	programs.	A	task	is	an	independent

program	thread	designed	to	be	executed	simultaneously,	or	in	parallel,	with	the	main	task.

There	are	many	kinds	of	parallelism	in	computer	science–indeed	there	are	whole	books	on

the	topic.	Pseudo	parallelism,	the	kind	we	have	in	RobotC,	is	the	simplest	and	oldest

form	of	parallelism.	In	pseudo	parallelism	the	CPU’s	computational	power,	the	number	of

calculations	it	can	do	per	second,	is	sliced	up	according	to	some	prioritization	in	a	process

called	time-division	multiplexing.

In	a	time-division	multiplexing	scheme,	suppose	that	a	CPU	can	do	100,000	calculations

per	second	and	suppose	that	there	are	4	tasks	of	equal	priority	and	equal	computational

requirements.	Then,	each	second,	the	CPU	will	dedicate	25,000	calculations	to	each	task.

Unfortunately,	this	simple	situation	rarely	occurs.

More	often,	the	tasks,	which	may	include	intense	loops	and	leisurely	waits,	require	differ-

ent	amounts	of	work	at	different	times.	When	the	CPU	decides	to	dedicate	some	calculations

to	a	particular	task	it	may	just	so	happen	that	the	task	is	in	a	wait	state	and	does	not	require

any	calculations.	A	smart	allocation	of	CPU	calculations	would	have	the	CPU	immediately

move	on	to	another	task	rather	than	wait	for	the	current	task	to	start	requiring	calculations

again.	After	all,	it	is	possible	that	the	CPU	can	attend	to	the	other	tasks	and	return	the

waiting	task	before	it	actually	requires	calculations.

In	RobotC,	all	tasks	are	given	equal	priority	by	default.	If	two	tasks	of	equal	priority

require	attention,	the	CPU	will	work	on	the	task	it	has	been	away	from	longest,	but	only	for

a	time-slice	equal	to	the	task’s	share.	After	it	receives	its	allotted	calculations,	whether	it	has

finished	its	task	or	not,	the	CPU	will	move	to	the	next	task	requiring	attention.	There	are

advanced	prioritization	schemes	possible	with	RobotC	summarized	in	the	RobotC	On-line

Support	on	the	left	side-bar	under	the	NXT	Functions	→	Task	Control	section.

59

60

CHAPTER	8.	TASKS	AND	SOUNDS

http://www.robotc.net/support/nxt/MindstormsWebHelp/index.htm
http://www.robotc.net/support/nxt/MindstormsWebHelp/index.htm

task3()

Sensor	1

Sensor	2

task1()

task2()

Global	1

Global	2

main()

Figure	8.1:	Some	tasks	(tasks	1	and	2)	might	monitor	(or	poll)	sensors	independently

and	rapidly	and	update	global	variables.	The	main	program	accesses	the	current	sensor

information	by	reading	from	the	global	variables.	Other	tasks	(task	3),	may	run	completely

independently–not	communicating	with	other	tasks	in	any	way.

The	syntax	for	writing	a	new	task	is

✞

☎

task	[t	a	s	k	n	a	m	e]()	{

//	block	of	i	n	s	t	r	u	c	t	i	o	n

}

✝

✆

and	is	written	outside	of	the	block	of	any	other	task,	including	the	main	task.

The	main	task	in	RobotC	is	always	executed	first.	Within	the	main	task	the	programmer

may	launch	a	new	thread	for	another	task	with	the	StartTask([taskname])	function.	They

may	end	the	task	with	the	StopTask([taskname])	function.

Tasks	can	communicate	with	each	other	through	global	variables.	If	a	task	assigns	a

value	to	a	global	variable,	the	other	tasks	all	have	instant	access	to	the	new	value.	In	this

way,	the	programmer	can	compartmentalize	instructions	associated	with	different	sensors

and	motors.	Consider	the	simple	program	in	Listing	8.1.

Here	we	have	two	tasks	monitoring	the	light	and	sonar	sensors	respectively	with	while-

loops.	The	tasks	continually	update	the	sensor	global	variables	which	are	then	read	and

displayed	by	the	main	task.	The	main	task,	executed	first,	launches	the	two	auxiliary	tasks

before	dropping	into	a	loop	to	display	the	light	and	sonar	values.

Listing	8.1	is	an	example	of	the	more	general	practice	of	using	tasks	to	poll	sensors	independently	and
then	using	global	variables	to	pass	information	back	to	the	main	program.

Figure	8.1	shows	the	general	structure	of	such	a	scheme.

8.1.	TASKS

61

✞

☎

#	p	r	a	g	m	a	c	o	n	f	i	g	(Sensor	,	S1	,	sonar	,	s	e	n	s	o	r	S	O	N	A	R)

#	p	r	a	g	m	a	c	o	n	f	i	g	(Sensor	,	S2	,	light	,	s	e	n	s	o	r	L	i	g	h	t	I	n	a	c	t	i	v	e)

//	Global	vari	able	s	.

int	L	i	g	h	t	V	a	l	u	e	;

int	S	o	n	a	r	V	a	l	u	e	;

task	M	o	n	i	t	o	r	L	i	g	h	t	()	{

w	h	i	l	e	(true)	{

L	i	g	h	t	V	a	l	u	e	=	S	e	n	s	o	r	V	a	l	u	e	[l	i	g	h	t];

}

}

task	M	o	n	i	t	o	r	S	o	n	a	r	()	{

w	h	i	l	e	(true)	{

S	o	n	a	r	V	a	l	u	e	=	S	e	n	s	o	r	V	a	l	u	e	[s	o	n	a	r];

}

}

task	main	()	{

S	t	a	r	t	T	a	s	k	(M	o	n	i	t	o	r	L	i	g	h	t);

S	t	a	r	t	T	a	s	k	(M	o	n	i	t	o	r	S	o	n	a	r);

w	h	i	l	e	(true)	{

n	x	t	D	i	s	p	l	a	y	S	t	r	i	n	g	(0	,	"	L	i	g	h	t	:	%3	d	"	,	L	i	g	h	t	V	a	l	u	e);

n	x	t	D	i	s	p	l	a	y	S	t	r	i	n	g	(1	,	"	S	o	n	a	r	:	%3	d	"	,	S	o	n	a	r	V	a	l	u	e);

w	a	i	t	1	0	M	s	e	c	(2	5)	;

}

}

✝

✆

Listing	8.1:	This	program	has	a	main	task	and	two	auxiliary	tasks.	Each	auxiliary	task	is

committed	to	monitoring	a	sensor	and	updating	the	sensor	value	in	the	associated	global

variable.

62

CHAPTER	8.	TASKS	AND	SOUNDS

Figure	8.2:	Eine	Kleine	Nachtmusik,	W.A.	Mozart.	Using	the	PlayTone()	function,	the

NXT	can	play	this	tune.

8.2

Sounds

The	NXT	brick	has	a	built	in	speaker	to	play	sounds.	Sounds	can	be	both	informative	and

entertaining.	Some	sounds	provide	user	feedback.	As	with	motor	movements,	playing	a

sound	takes	time.	The	sound	system	in	RobotC	is	built	around	a	queue	(see	Section	6.6,

exercise	6).	There	are	several	functions,	detailed	in	the	RobotC	On-line	Support	on	the	left	side-bar
under	the	NXT	Functions	→	Sound	section,	that	will	cause	the	NXT	to	play

a	sound.	If	a	request	for	a	sound	is	made	before	the	previous	sound	is	finished	playing,	the

request	is	put	into	the	sound	queue.	Each	sound	in	the	sound	queue	is	played	in	the	order

in	which	the	sound	request	is	made.

8.2.1

Music

Using	the	PlayTone()	function	and	careful	timing,	it	is	possible	to	reproduce	simple	musical

passages	on	the	NXT.	The	PlayTone()	function	takes	two	arguments–a	frequency	followed

by	a	duration	in	units	of	10Msec.	The	frequencies	of	musical	notes	are	known	constants.

Consider,	for	example,	the	opening	measures	of	Mozart’s	Eine	Kleine	Nachtmusik	given	in

Figure	8.2.

The	notes	of	this	passage,	with	octave	numbers	and	R’s	representing	rests,	are:

Measure	1:

G5

R

D5

G5

R

D5

Beats:

2

1

http://www.robotc.net/support/nxt/MindstormsWebHelp/index.htm
http://www.phy.mtu.edu/~suits/notefreqs.html

1

2

1

1

Measure	2:

G5

D5

G5

B5

D6

R

Beats:

1

1

1

1

2

2

Measure	3:

C6

R

A5

C6

R

A5

Beats:

2

1

1

2

1

1

Measure	4:

C6

A5

F#

A

5

5

D5

R

Beats:

1

1

1

1

2

2

Since	this	is	originally	for	violin,	we	will	let	the	C	in	the	third	measure	be	in	the	6th	octave.

Referring	to	a	list	of	note	frequencies,	we	arrive	at	the	following	list	of	frequencies	and	beats

for	the	notes	we	need.

8.2.	SOUNDS

63

Measure	1:

783.99

R

587.33

783.99

R

587.33

Beats:

2

1

1

2

1

1

Measure	2:

783.99

587.33

783.99

987.77

1174.66

R

Beats:

1

1

1

1

2

2

Measure	3:

1046.50

R

880.00

1046.50

R

880.00

Beats:

2

1

1

2

1

1

Measure	4:

1046.50

880.00

739.99

880.00

587.33

R

Beats:

1

1

1

1

2

2

In	Listing	8.2,	we	put	all	of	the	pieces	together.

Notice	the	use	of	named	constants	to	represent	the	notes.	Also,	notice	the	use	of	the

named	constant	BEAT	to	set	the	duration	of	notes	and	rests.	Finally,	using	the	reserved

boolean	variable	bSoundActive,	we	can	introduce	holds	to	allow	notes	to	finish.	The	sound

queue	is	limited	to	just	10	requests,	so	it	is	a	good	idea	to	wait	for	the	queue	to	empty	at	the

end	of	each	measure	or	after	10	requests	whichever	comes	first.	While	sounds	are	playing

from	the	sound	queue	bSoundActive	is	true.	When	all	requested	sounds	are	finished	playing

bSoundActive	is	false.	Also,	PlayTone()	requests	are	made	instantly,	so	it	is	important

to	wait	for	tones	to	finish	before	rests.	Otherwise,	the	rests	will	occur	while	the	notes	are

playing!

8.2.2

Other	Sounds

In	addition	to	playing	musical	notes,	it	is	possible	to	play	other	sounds.	Using	the	File

Management	system,	as	described	in	the	RobotC	On-line	Support	on	the	left	side-bar	under	the
ROBOTC	Interface	→	NXT	Brick	Menu	→	File	Management	section,	it	is	possible	to

place	sound	files	onto	the	NXT	brick	for	subsequent	use	during	programs.	Because	of	memory

limitations,	these	sounds	must	be	short	(less	than	a	few	seconds).	To	place	your	own	sounds

http://www.robotc.net/support/nxt/MindstormsWebHelp/index.htm

on	the	NXT,	you	must	first	find	a	sound	file	in	the	.wav	format.	There	are	many	programs

available	to	convert	sound	files	(like	.mp3)	to	.wav	format.	A	good	free	program	for	this

purpose	is	Audacity.	You	can	use	Audacity	to	clip	out	a	section	of	a	larger	sound	file	and	save	it	to	a
.wav	format.

RobotC	sound	files	are	a	special	format	and	have	the	file	extension	.rso.	Once	you	have

created	the	.wav	file	you	are	interested	in,	you	must	convert	it	to	.rso	format.	A	simple,

free	converter	program	for	Windows	is	here.

Once	you	have	created	your	custom	sound	file,	copy	it	to	the	NXT	using	the	File	Manage-

ment	window,	you	can	play	the	sound	file	from	within	a	program	using	the	PlaySoundFile()

function.	Its	single	argument	is	the	filename	of	the	sound	as	a	string.	For	example,	suppose

you	have	Homer	Simpsons	famous	“Doh!”	in	a	sound	file	called	doh.rso,	then

✞

☎

P	l	a	y	S	o	u	n	d	F	i	l	e	("	doh	.	rso	");

✝

✆

will	cause	your	NXT	to	say	“Doh!”.	This	is	particularly	useful	if	your	robot	bumps	into	a

wall!

64

CHAPTER	8.	TASKS	AND	SOUNDS

✞

☎

//	Note	F	r	e	q	u	e	n	c	i	e	s

c	o	n	s	t	f	l	o	a	t	D5	=	5	8	7	.	3	3	;

c	o	n	s	t	f	l	o	a	t	G5	=	7	8	3	.	9	9	;

c	o	n	s	t	f	l	o	a	t	F	5	S	h	a	r	p	=	7	3	9	.	9	9	;

http://audacity.sourceforge.net
http://mikrobot.blogspot.com/2008/10/sofware-for-convert-wav-to-rso-nxt.html

c	o	n	s	t	f	l	o	a	t	A5	=	8	8	0	.	0	0	;

c	o	n	s	t	f	l	o	a	t	B5	=	9	8	7	.	7	7	;

c	o	n	s	t	f	l	o	a	t	C6	=	1	0	4	6	.	5	0	;

c	o	n	s	t	f	l	o	a	t	D6	=	1	1	7	4	.	6	6	;

c	o	n	s	t	int	BEAT	=20;	//	in	10	Msec

task	main	()	{

//	Measure	1

P	l	a	y	T	o	n	e	(G5	,2*	BEAT);

w	h	i	l	e	(b	S	o	u	n	d	A	c	t	i	v	e){}	//	wait	for	tone	(s)	to	finish

w	a	i	t	1	0	M	s	e	c	(BEAT);

P	l	a	y	T	o	n	e	(D5	,	BEAT);

P	l	a	y	T	o	n	e	(G5	,2*	BEAT);

w	h	i	l	e	(b	S	o	u	n	d	A	c	t	i	v	e){}	//	wait	for	tone	(s)	to	finish

w	a	i	t	1	0	M	s	e	c	(BEAT);

P	l	a	y	T	o	n	e	(D5	,	BEAT);

w	h	i	l	e	(b	S	o	u	n	d	A	c	t	i	v	e){}	//	wait	for	tone	(s)	to	finish

//	Measure	2

P	l	a	y	T	o	n	e	(G5	,	BEAT);

P	l	a	y	T	o	n	e	(D5	,	BEAT);

P	l	a	y	T	o	n	e	(G5	,	BEAT);

P	l	a	y	T	o	n	e	(B5	,	BEAT);

P	l	a	y	T	o	n	e	(D6	,2*	BEAT);

w	h	i	l	e	(b	S	o	u	n	d	A	c	t	i	v	e){}	//	wait	for	tone	(s)	to	finish

w	a	i	t	1	0	M	s	e	c	(2*	BEAT);

w	h	i	l	e	(b	S	o	u	n	d	A	c	t	i	v	e){}	//	wait	for	tone	(s)	to	finish

//	Measure	3	and	Measure	4	omitted	.

}

✝

✆

Listing	8.2:	This	program	uses	the	PlayTone()	function	to	play	the	opening	passage	of

Mozart’s	Eine	Kleine	Nachtmusik.

8.3.	EXERCISES

65

8.3

Exercises

1.	Write	a	program	that	displays	a	scrolling	bar	graph	of	the	light	sensor	values	sampled

at	100	millisecond	intervals.	Use	the	touch	sensor	to	start,	pause,	and	restart	the

program	when	the	button	is	depressed.

2.	Write	a	program	for	a	tribot-style	robot	that	will	start	moving	forward	at	the	sound

of	a	loud	noise	that	is	detected	using	the	sound	sensor	and	stop	after	crossing	three

black	lines	on	the	ground	that	are	detected	using	the	light	sensor.

3.	Write	a	program	for	a	tribot-style	robot	that	will	begin	moving	forward	when	the	touch

sensor	is	depressed.	When	the	robot	gets	too	close	to	an	obstacle	(detected	using	the

sonar	sensor),	it	will	emit	an	exclamatory	sound,	back	up,	rotate	90	degrees,	and

attempt	to	proceed.	It	will	continue	in	this	fashion	until	the	touch	sensor	is	pressed

again.

4.	Read	the	left	and	right	motor	encoders	to	create	an	Etch	A	SketchTM.	Implement	a

way	to	clear	the	screen	(touch	sensor?).	Perhaps	also	implement	a	way	to	lift	the	pen

(which	you	can’t	do	in	a	real	Etch	A	SketchTM).

5.	Find	a	well-known	piece	of	music	and	program	your	robot	to	play	it	using	the	PlayTone()

function.

6.	Create	a	custom	sound	file	and	write	a	program	that	causes	your	robot	to	play	the

sound.

66

CHAPTER	8.	TASKS	AND	SOUNDS

Chapter	9

Files

RobotC	on	the	NXT	allows	for	the	creation,	reading,	writing	and	manipulation	of	data	files.

Data	files	allow	the	robot	to	store	data	collected	during	the	execution	of	one	program	to	be

used	during	the	execution	of	a	different	program.

For	example,	imagine	a	simple	light	sensor	program	that	reads	light	levels	every	15

minutes	for	a	period	of	one	day.	We	might	start	the	program	and	leave	the	robot	running

for	a	day	in	a	room	with	a	window.	The	program	would	store	the	light	level	measurements

in	a	data	file	and	exit	after	one	day	has	elapsed.	Suppose	that	we	return	after	a	few	days

and	would	like	to	see	a	graph	of	the	light	level	readings.	We	turn	on	the	NXT	and	run	a

different	program	that	is	able	to	open	the	data	file	created	by	the	light	sensor	program	and

create	a	graph	of	the	data.	In	this	way,	we	can	get	an	idea	of	what	the	light	level	readings

were	like	on	the	day	the	measurements	were	made.

Just	like	a	hard	drive	or	thumb	drive,	the	typical	NXT	stores	a	collection	of	files.	The

files	on	the	NXT	can	be	viewed	from	within	RobotC	using	the	Robot	→	NXT	Brick	→	File

Management	menu	described	in	the	RobotC	On-line	Support	on	the	left	side-bar	under	the	ROBOTC
Interface	→	NXT	Brick	Menu	→	File	Management	section.

The	File	Managment	list	shows	the	names	of	all	of	the	files	currently	on	the	NXT.	A

typical	filename	has	a	name	(up	to	15	characters)	and	an	extension	(up	to	3	characters)

with	a	period	separating	the	two.	For	example,	sound	files	end	with	the	rso	extension.

Executable	program	files	end	with	the	rxe	extension.

http://www.robotc.net/support/nxt/MindstormsWebHelp/index.htm

There	are	a	number	of	limitations	on	files	other	than	the	15.3	character	limit.	The	NXT

can	only	hold	64	files	in	total.	If	during	a	project,	the	64	file	limit	is	reached,	some	files

will	have	to	be	deleted	before	continuing.	During	any	single	program,	only	16	files	may	be

open	at	any	one	time.	Finally,	there	is	a	limit	to	how	much	information	can	be	stored	on

the	NXT.

9.1

Memory:	Bits	and	Bytes

To	understand	how	much	information	can	be	stored	in	a	file	on	the	NXT	brick,	it	is	necessary

to	understand	some	of	the	nearly	universal	units	of	information	storage	in	computer	science.

The	smallest	unit	of	information	is	the	bit–an	entity	that	can	be	one	of	two	values–typically

0	or	1.	A	byte	in	our	context	is	defined	as	a	collection	of	8	bits.	The	8	bits	per	byte

67

68

CHAPTER	9.	FILES

←One	Byte→

Places:

27

26

25

24

23

22

21

20

Digits:

0

1

1

0

0

0

0

1

Table	9.1:	A	byte	consisting	of	8	binary	bits.	The	byte	can	be	interpreted	as	an	8	digit

number	expressed	in	base	2.	From	right	to	left	there	is	the	ones	place,	twos	place,	the	fours

place	etc.

Prefix

Decimal

Binary

kilo-

103	=	1,	000

210	=	1,	024

mega-

106	=	1	million

220	=	(1,	024)2

giga-

109	=	1	billion

230	=	(1,	024)3

Table	9.2:	The	standard	prefix	multiplier	definitions	for	decimal	and	binary	contexts.	At-

tempts	to	standardize	the	use	of	these	prefixes	have	largely	failed.	If	in	doubt,	read	the

documentation	carefully.

definition	is	nearly	universal,	though	in	rare	instances	(usually	older	computer	systems)	the

byte	may	be	defined	as	a	different	number	of	bits.	If	in	doubt,	read	your	computer	system’s

manual!

A	bit	can	represent	one	of	two	different	states.	A	byte	can	represent	one	of	28	=	256

different	states.	Because	of	this,	it	is	often	convenient	to	interpret	the	8	bits	in	a	byte	as	an

integer	between	0	and	255.	Consider	the	“byte”	in	Table	9.1.

To	convert	this	byte	to	a	base	10	integer,	we	first	assign	binary	place	values	to	each	bit

position.	From	right	to	left,	we	have	the	ones	position,	the	twos	position,	the	fours	position

etc.	The	corresponding	integer	is	just	the	sum	of	the	place	values	that	have	one	digits.	In

this	case,

0	·	27	+	1	·	26	+	1	·	25	+	0	·	24	+	0	·	23	+	0	·	22	+	0	·	21	+	1	·	20	=	64	+	32	+	1

=	97

In	RobotC,	a	char	datatype	is	represented	by	a	single	byte.	For	the	English	language

character	set	there	is	an	almost	universally	agreed	upon	standard	for	assigning	characters	to

integers	called	the	ASCII	character	set.	In	the	case	of	our	example,	the	byte	has	a	decimal	representation
of	97.	If	we	look	up	97	in	the	ASCII	table,	we	find	that	it	corresponds	to	the

character	’a’.	Indeed,	in	the	NXT’s	memory,	which	is	really	just	an	organized	collection	of

bits,	the	character	’a’	would	look	just	like	Table	9.1.

Early	computer	scientists,	in	an	attempt	to	use	familiar	language,	adopted	the	use	of	the

kilo-,	mega-,	giga-	prefixes	to	describe	larger	collections	of	bytes.	As	a	compromise	between

the	traditional	meaning	of	these	prefixes	and	the	base	two	nature	of	computer	science,	they

extended	their	definitions	as	in	Table	9.2.

A	kilobyte,	for	example,	is	not	1,000	bytes,	but	rather	1,024	bytes.	A	kilogram,	however,

is	still	1,000	grams.	The	correct	multiplier	depends	on	the	context.	Typically,	in	a	computer

science	context,	the	multiplier	is	a	power	of	2.	In	recent	years,	marketers	of	computer

http://en.wikipedia.org/wiki/ASCII#ASCII_printable_characters

9.2.	READING	AND	WRITING

69

equipment,	which	one	would	expect	to	use	the	base	two	multipliers,	have	instead	used	the

base	ten	multipliers	to	make	their	hardware	look	better.	For	example,	when	purchasing	a

computer	a	consumer	might	wonder:	Is	a	gigabyte	of	RAM	1,024	megabytes,	or	just	1,000

megabytes?	If	the	latter,	then	they	may	have	24	fewer	megabytes	than	they	expected.	This

abuse	of	the	prefixes	has	led	to	widespread	ambiguity	about	the	precise	meaning	of	the	kilo-,

mega-,	and	giga-	prefixes.

There	are	also	some	loosely	held	standards	for	abbreviating	collections	of	bits	and	bytes.

Typically	the	word	bit	is	abbreviated	with	a	lowercase	’b’,	whereas	byte	is	abbreviated	with

an	uppercase	’B’.	The	prefix	abbreviations	are	typically	capitalized,	kilo-	(K),	mega-	(M),

and	giga-	(G).	However,	it	is	not	uncommon	for	kilo-	to	use	a	lowercase	’k’.	A	hard	disk	drive

might	be	marketed	as	having	a	capacity	of	130GB	(130	gigabytes).	An	internet	connection

might	be	marketed	as	being	able	to	deliver	1.5Mbps	(1.5	megabits	per	second,	that’s	just

0.1875	megabytes	per	second).	And,	of	course,	there	is	still	the	question	of	what	giga-	and

mega-	actually	mean	in	these	two	examples!

The	NXT	brick	has	a	32-bit	CPU.	This	means	that	the	CPU	can	process	32-bits	at	a	time

(4	bytes).	There	are	64KB	of	RAM	and	256KB(0.25MB)	of	persistent	storage.	Compared

to	laptop	and	desktop	computers,	this	is	a	small	amount	of	memory.	Because	the	tiny	NXT

operating	system	is	also	stored	in	the	persistent	storage,	not	all	of	the	256KB	is	available	for

data	files.	As	a	result,	the	programmer	must	be	as	efficient	as	possible	so	as	not	to	exceed

the	available	resources.

Returning	to	the	File	Management	window,	click	on	one	of	the	sound	files	and	then	click

the	“Info”	button.	In	the	text	window	at	the	bottom,	the	size	of	the	file	is	given	in	bytes.

Indeed,	in	the	file	list,	the	size	of	every	file	is	given	to	the	nearest	tenth	of	a	kilobyte.	It	is

possible	to	delete	files	by	selecting	particular	files	and	clicking	the	“Delete”	button.	When

trying	to	free	up	space,	user	generated	data	files,	old	User	Programs	(rxe),	and	Try	Me

programs	(rtm)	are	good	candidates	for	deletion.	All	of	these	types	of	files	can	be	replaced

if	you	have	your	original	programs	saved	someplace	else.

9.2

Reading	and	Writing

Files	in	persistent	storage	are	accessed	in	a	program	in	one	of	two	modes:	read	or	write.	In

write	mode,	data	can	be	written	to	the	file.	In	read	mode,	data	can	be	read	from	the	file.	A

file	cannot	be	in	read	and	write	mode	simultaneously.	The	mode	is	determined	at	the	time

the	file	is	opened.

A	file	in	persistent	storage	is	identified	by	its	filename.	However,	within	a	program,	for

the	sake	of	readability,	a	file	is	identified	by	its	filehandle.	A	filehandle	is	a	variable	that

represents	the	external	file.	All	references	to	the	file	are	made	through	the	filehandle.	A

filehandle	variable	must	be	declared	as	type	TFileHandle.	A	second	special	datatype	for

use	with	files	is	the	TFileIOResult	type.	A	variable	of	type	TFileIOResult	is	capable

of	holding	error	messages	related	to	various	file	operations.	For	example,	if	the	program

attempts	to	open	a	file	in	read	mode	and	the	file	does	not	exist,	the	program	will	not	crash.

Instead	the	error	will	be	reported	in	the	TFileIOResult	variable.	A	careful	programmer

can	check	the	error	message	and	offer	the	user	alternatives	to	resolve	the	problem	instead	of

allowing	the	program	to	crash.

70

CHAPTER	9.	FILES

Function

Description

OpenRead(TFileHandle,

opens	a	file	in	read	mode	and	attaches	it	to	the	first

TFileIOResult,	string,

argument,	error	codes	are	placed	in	the	second	argument,

int)

the	third	argument	is	the	external	filename,	the	fourth

argument	is	the	size	(bytes)	of	the	file.

OpenWrite(TFileHandle,

opens	a	file	in	write	mode	and	attaches	it	to	the	first

TFileIOResult,	string,

argument,	error	codes	are	placed	in	the	second	argument,

int)

the	third	argument	is	the	external	filename,	the	fourth

argument	is	the	size	(bytes)	of	the	file,	if	the	file	already

exists,	the	function	will	fail.

Close(TFileHandle,

closes	any	file	(read	or	write)	and	detaches	it	from	the

TFileIOResult)

first	argument,	error	codes	are	placed	in	the	second	ar-

gument,	files	not	closed	may	be	corrupted	and	data	lost.

Delete(string,

deletes	the	file	named	in	the	first	argument	from	the	NXT

TFileIOResult)

brick,	error	codes	are	placed	in	the	second	argument,	use-

ful	for	erasing	a	possibly	pre-existing	file	before	opening

it	in	write	mode.

Table	9.3:	A	summary	of	important	file	handling	functions.

A	summary	of	the	various	file	operations	is	in	the	RobotC	On-line	Support	on	the	left	side-bar	under	the
NXT	Functions	→	File	Access	section.	(Note:	this	page	does	not	provide

documentation	for	the	TFileHandle	and	TFileIOResult	datatypes	described	above.)	Table

9.3	shows	a	list	of	available	RobotC	commands	for	accessing	files.	Each	function	is	listed	along	with
the	expected	arguments	and	their	types.

Table	9.4	shows	a	list	of	available	RobotC	commands	for	accessing	files.	Each	function	is	listed	along
with	the	expected	arguments	and	their	types.

As	we	can	see	from	the	tables	of	commands,	it	is	necessary	to	know	how	many	bytes

are	required	to	store	a	variable	of	a	specific	datatype.	Table	9.5	shows	the	commonly	used	datatypes	and
the	number	of	bytes	each	uses.

Listing	9.1	shows	a	program	that	records	light	levels	at	15	minute	intervals	for	one	day	and	stores	the
readings	in	a	file	called	lightreadings.dat.	Notice	that	we	declare	the

filehandle	variable	and	file	error	variable	but	never	assign	values	to	them	explicitly.	Instead

they	are	used	by	the	OpenWrite(),	WriteShort(),	and	Close()	functions	and	we	never

know	their	values.	To	determine	how	large,	in	bytes,	the	file	must	be,	we	refer	to	Table

9.5	and	recall	that	SensorValue[Light]	is	of	type	int	which	is	2	bytes.	We	will	write	97

readings	for	a	total	of	194	bytes.	The	outer	for-loop	reads	the	light	sensor,	writes	the	value	to

the	output	file,	and	waits	15	minutes	before	repeating.	When	the	for-loop	exits,	the	output

file	is	closed.	Notice	the	use	of	named	constants	to	improve	readability.

Listing	9.2	is	a	companion	program	to	Listing	9.1.	This	program	opens	the	file	of	light	readings	and
displays	a	bar	graph	of	the	readings	as	a	simple	bar	graph.	Each	sample	is

read	from	the	file	into	the	temporary	variable	n.	The	value	is	then	used	to	create	a	vertical

line	to	represent	the	value	in	the	bar	graph.

9.2.	READING	AND	WRITING

71

Function

Description

http://www.robotc.net/support/nxt/MindstormsWebHelp/index.htm

ReadByte(TFileHandle,

reads	the	next	byte	from	the	file	and	places	it	into	the

TFileIOResult,	char)

third	argument.

ReadShort(TFileHandle,

reads	the	next	2	bytes	from	the	file	and	places	it	into	the

TFileIOResult,	int)

third	argument.

ReadFloat(TFileHandle,

reads	the	next	4	bytes	from	the	file	and	places	it	into	the

TFileIOResult,	float)

third	argument.

ReadString(TFileHandle,

reads	the	next	several	bytes	corresponding	to	string	data

TFileIOResult,	string)

from	the	file	and	places	it	into	the	third	argument.

WriteByte(TFileHandle,

writes	the	third	argument	to	the	file	as	1	byte.

TFileIOResult,	char)

WriteShort(TFileHandle,

writes	the	third	argument	to	the	file	as	2	bytes.

TFileIOResult,	int)

WriteFloat(TFileHandle,

writes	the	third	argument	to	the	file	as	4	bytes.

TFileIOResult,	float)

WriteString(TFileHandle,	writes	the	third	argument	to	the	file	as	several	bytes.

TFileIOResult,	string)

Table	9.4:	A	summary	of	functions	for	reading	and	writing	data	to	files.

Datatype

Memory	Requirement

char,	bool

1	byte

int,	short

2	bytes

float,	long

4	bytes

string

variable	size,	one	byte	per	character	plus	one	byte	for	the

special	(invisible)	end-of-string	character

Table	9.5:	A	summary	datatypes	and	their	memory	requirements.

72

CHAPTER	9.	FILES

✞

☎

#	p	r	a	g	m	a	c	o	n	f	i	g	(Sensor	,	S1	,	Light	,	s	e	n	s	o	r	L	i	g	h	t	I	n	a	c	t	i	v	e)

c	o	n	s	t	s	t	r	i	n	g	F	I	L	E	N	A	M	E	=	"	l	i	g	h	t	r	e	a	d	i	n	g	s	.	dat	"	;

c	o	n	s	t	int	N	U	M	S	A	M	P	L	E	S	=	97;

c	o	n	s	t	int	S	A	M	P	L	E	I	N	T	E	R	V	A	L	=	15;	//	in	minutes

task	main	()	{

T	F	i	l	e	I	O	R	e	s	u	l	t	n	I	O	R	e	s	u	l	t	;

T	F	i	l	e	H	a	n	d	l	e	L	I	G	H	T	F	I	L	E	;

int	F	i	l	e	S	i	z	e	=	2*	N	U	M	S	A	M	P	L	E	S	;

int	i	,	j	;

O	p	e	n	W	r	i	t	e	(L	I	G	H	T	F	I	L	E	,	n	I	O	R	e	s	u	l	t	,	FILENAME	,	F	i	l	e	S	i	z	e);

for	(i	=1;	i	<=	N	U	M	S	A	M	P	L	E	S	;	i	++)	{

W	r	i	t	e	S	h	o	r	t	(L	I	G	H	T	F	I	L	E	,	n	I	O	R	e	s	u	l	t	,	S	e	n	s	o	r	V	a	l	u	e	[L	i	g	h	t]);

for	(j	=0;	j	<	S	A	M	P	L	E	I	N	T	E	R	V	A	L	&&	i	!=	N	U	M	S	A	M	P	L	E	S	;	j	++)	{

w	a	i	t	1	0	M	s	e	c	(6	0	0	0)	;	//	one	minute

}

}

C	l	o	s	e	(L	I	G	H	T	F	I	L	E	,	n	I	O	R	e	s	u	l	t);

}

✝

✆

Listing	9.1:	This	program	records	light	level	readings	to	a	file	at	15	minute	intervals	for	a

full	day.

✞

☎

#	p	r	a	g	m	a	c	o	n	f	i	g	(Sensor	,	S1	,	Light	,	s	e	n	s	o	r	L	i	g	h	t	I	n	a	c	t	i	v	e)

c	o	n	s	t	s	t	r	i	n	g	F	I	L	E	N	A	M	E	=	"	l	i	g	h	t	r	e	a	d	i	n	g	s	.	dat	"	;

c	o	n	s	t	int	N	U	M	S	A	M	P	L	E	S	=	97;

task	main	()	{

T	F	i	l	e	I	O	R	e	s	u	l	t	n	I	O	R	e	s	u	l	t	;

T	F	i	l	e	H	a	n	d	l	e	L	I	G	H	T	F	I	L	E	;

int	F	i	l	e	S	i	z	e	=	2*	N	U	M	S	A	M	P	L	E	S	;

int	i	,	n	;

O	p	e	n	R	e	a	d	(L	I	G	H	T	F	I	L	E	,	n	I	O	R	e	s	u	l	t	,	FILENAME	,	F	i	l	e	S	i	z	e);

for	(i	=1;	i	<=	N	U	M	S	A	M	P	L	E	S	;	i	++)	{

R	e	a	d	S	h	o	r	t	(L	I	G	H	T	F	I	L	E	,	n	I	O	R	e	s	u	l	t	,	n);

n	x	t	D	r	a	w	L	i	n	e	(i	,0	,	i	,	n);

}

C	l	o	s	e	(L	I	G	H	T	F	I	L	E	,	n	I	O	R	e	s	u	l	t);

w	a	i	t	1	0	M	s	e	c	(1	0	0	0)	;

}

✝

✆

Listing	9.2:	This	program	displays	the	light	readings	found	in	the	file.

9.3.	EXERCISES

73

9.3

Exercises

1.	By	referring	to	the	ASCII	table,	write	out	the	bits	that	represent	the	letters	of	your

first	name.	Make	sure	you	capitalize	the	first	letter	and	be	sure	to	carefully	identify

each	byte	and	its	corresponding	letter.

2.	Consider	a	task	in	a	program	that	reads	the	left	and	right	motor	encoders	every	tenth

of	a	second	and	writes	the	values	to	a	data	file.	How	large	(bytes)	will	the	data	file	be

if	the	readings	are	taken	over	a	period	of	10	seconds?

3.	Suppose	your	name	is	stored	in	two	string-type	variables,	FirstName	and	LastName.

How	many	bytes	will	be	used	if	these	two	variables	are	written	to	a	file?

4.	What	will	be	the	result	of	the	following	snippet	of	code?

✞

☎

int	n	=	98;

n	x	t	D	i	s	p	l	a	y	S	t	r	i	n	g	(1	,	"	%	c	"	,	(char)	n);

✝

✆

5.	Recall	the	Etch	A	SketchTM	exercise	(Exercise	4	from	Section	8.3).	Describe	a	method	for	storing
the	finished	sketch	in	a	file	to	be	opened	later	and	displayed.	How	large

(bytes)	will	the	sketch	file	have	to	be?

6.	Write	a	pair	of	programs	called	Record	and	Playback	for	a	tri-bot	style	robot.	The

Record	program	will	record	motor	encoder	values	every	tenth	of	a	second	for	10	seconds

while	the	user	pushes	the	robot	around	on	the	floor.	The	encoder	values	will	be	written

to	a	data	file.	The	Playback	program	will	open	the	encoder	data	file	and	use	the	data

to	reproduce	the	original	movements	of	the	robot.

74

CHAPTER	9.	FILES

Chapter	10

Inter-Robot	Communication

NXT	bricks	have	the	ability	to	communicate	with	each	other	wirelessly	via	the	BluetoothTM

protocol.	In	this	chapter	we	will	learn	how	to	use	this	capability	and,	in	the	process,	learn

some	of	the	basic	features	of	network	communication.	Network	communication	in	software	is

ubiquitous.	Mobile	phones,	iPods,	laptops,	credit	card	swipes,	and	ATM’s	all	have	internal

software	with	networking	capabilities.	There	are	even	refrigerators	and	vending	machines

with	networking	capabilities!

To	take	advantage	of	NXT-to-NXT	communication,	the	bricks	in	question	have	to	be

paired	up	manually.	Instructions	on	how	to	do	so	are	available	in	the	RobotC	On-line

http://www.robotc.net/support/nxt/MindstormsWebHelp/index.htm

Support	on	the	left	side-bar	under	the	ROBOTC	Interface	→	Bluetooth	and	the	NXT	→

Connecting	Two	NXT	Bricks	section.

You	will	notice	in	this	tutorial	that	the	NXT	bricks	have	been	given	“friendly”	names–in

this	case	“ROBOTC1”	and	“ROBOTC2”.	Following	this	example,	it	is	a	good	idea	to	give	your

robot	a	friendly	name	as	well.	Under	the	RobotC	menu	Robot	→	NXT	Brick	→	Link	Setup,

choose	the	“Rename	NXT”	button	and	rename	the	brick.

A	single	NXT	brick	can	be	paired	with	up	to	3	other	bricks.	RobotC	provides	a	very

sophisticated	set	of	inter-robot	communication	tools.	However,	when	paired	with	more	than

one	other	brick,	RobotC’s	inter-robot	communication	functions	are	far	less	efficient.	There

is	also	a	simplified	set	of	communication	tools	that	are	specific	to	the	situation	when	only

two	robots	are	in	communication	with	each	other.	We	will	only	consider	the	simplified

communication	system	summarized	here1.

10.1

Simple	Communication	Functions

All	sending	of	information	between	bricks	is	done	with	the	function	in	Table	10.1.

At	the	receiving	end,	there	three	entities	used	to	manage	communication.	These	entities

are	summarized	in	Table	10.2.

As	we	can	see	from	Tables	10.1	and	10.2,	any	and	all	information	transmitted	between	bricks	must	be
represented	in	triples	of	type	int.	For	example,	if	we	want	to	send	left

and	right	motor	encoder	values	and	the	light	sensor	value,	in	sendMessageWithParms()	we

would	make	the	first	argument	the	left	motor	encoder	value,	the	second	argument	the	right

1http://carrot.whitman.edu/Robots/NXT/Messaging.htm

75

76

CHAPTER	10.	INTER-ROBOT	COMMUNICATION

Function

http://www.robotc.net/support/nxt/MindstormsWebHelp/index.htm
http://carrot.whitman.edu/Robots/NXT/Messaging.htm

Description

sendMessageWithParms(int,

transmit	3	ints	(2	bytes	each)	to	the	paired	brick.

int,	int)

Table	10.1:	The	primary	send	function.

Entity

Description

messageParm[]

a	3-element	int	array	which	always	contains	the

next	available	received	message.

bQueuedMsgAvailable()

a	boolean-valued	function	that	is	true	if	a	mes-

sage	is	waiting,	false	otherwise.

ClearMessage()

a	void	function	that	removes	the	current	message

from	the	message	queue.

Calling	this	function

will	cause	the	messageParm[]	array	to	be	updated

with	the	next	available	received	message.

Table	10.2:	The	primary	entities	required	for	managing	received	messages.

motor	encoder	value,	and	the	third	argument	the	light	sensor	value.	At	the	receiving	end,

we	know	that	the	left	motor	encoder	value	is	in	messageParm[0],	the	right	motor	encoder

value	is	in	messageParm[1],	and	the	light	sensor	value	is	in	messageParm[2].

If	we	continue	to	send	updated	information	about	the	motors	and	light	sensor	in	subse-

quent	transmissions,	the	messages	are	stored	in	a	queue	in	the	receiving	brick.	The	receive

queue	can	hold	at	most	10	messages.	After	that,	transmitted	messages	are	lost	until	the

ClearMessage()	command	is	used	to	free	up	space	in	the	queue.

Another	limitation	is	that	all	of	the	information	must	be	sent	in	the	form	of	a	trio	of

variables	of	type	int.	Fortunately,	most	of	the	data	we	want	to	transmit	(e.g.	encoder	and

sensor	values)	are	of	this	type.	Non-integer	data	like	characters,	strings,	booleans	and	floats

must	be	somehow	converted	to	integers,	transmitted,	and	then	converted	back.	Messages

that	need	more	than	6	bytes	of	storage	(3	int	variables),	must	be	broken	down	in	to	several

messages	by	the	sender	and	then	reconstructed	by	the	receiver.

10.2

Message	Timing

Timing	network	communication	is	an	important	issue	in	computer	science.	If	information	is

sent	too	quickly,	it	can	be	lost.	Imagine,	for	example,	a	brick	sending	information	every	tenth

of	a	second	to	a	second	brick	that	is	processing	received	messages	every	half	second.	In	1.4

seconds,	give	or	take,	the	message	queue	will	overflow	and	messages	will	be	lost.	The	careful

programmer	must	take	this	into	account	and	insure	that	received	messages	are	processed

faster	than	sent	messages.	Listing	10.1	shows	two	programs,	a	send	and	a	receive.	The	send	program
transmits	the	sonar	sensor	value	to	the	receiving	program	at	a	rate	of	10	readings

per	second.	The	receiving	program	processes	the	values	at	a	rate	of	20	readings	per	second.

Notice	the	use	of	the	three	entities	summarized	in	Table	10.2	in	the	Receive	program.

10.2.	MESSAGE	TIMING

77

Because	messages	are	being	processed	at	a	faster	rate	than	they	are	transmitted,	often	the

message	queue	will	be	empty.	The	Receive	program	uses	the	bQueuedMsgAvailable()

function	to	see	if	there	is	a	new	message.	If	not,	it	does	nothing.	If	there	is	a	message,	the

data	is	accessed	using	the	messageParm[]	array	and	then	cleared	using	the	ClearMessage()

function.

Send

✞

☎

#	p	r	a	g	m	a	c	o	n	f	i	g	(Sensor	,	S1	,	Sonar	,	s	e	n	s	o	r	S	O	N	A	R)

task	main	()	{

int	x1	,	x2	,	x3	;

x2	=0;	//	dummy

x3	=0;	//	dummy

w	h	i	l	e	(true)	{

x1	=	S	e	n	s	o	r	V	a	l	u	e	[S	o	n	a	r];

s	e	n	d	M	e	s	s	a	g	e	W	i	t	h	P	a	r	m	s	(x1	,	x2	,	x3);

w	a	i	t	1	M	s	e	c	(1	0	0)	;	//	wait	one	-	tenth	of	a	second

}

}

✝

✆

Receive

✞

☎

task	main	()	{

w	h	i	l	e	(true)	{

if	(b	Q	u	e	u	e	d	M	s	g	A	v	a	i	l	a	b	l	e	())	{

e	r	a	s	e	D	i	s	p	l	a	y	();

n	x	t	D	i	s	p	l	a	y	C	e	n	t	e	r	e	d	T	e	x	t	L	i	n	e	(3	,	"	%	d	"	,

m	e	s	s	a	g	e	P	a	r	m	[0])	;

C	l	e	a	r	M	e	s	s	a	g	e	();

}

w	a	i	t	1	M	s	e	c	(5	0)	;	//	wait	one	-	twen	tiet	h	of	a	second

}

}

✝

✆

Listing	10.1:	This	pair	of	programs	demonstrates	the	periodic	transmission	of	sonar	data

from	one	brick	to	another.	The	first	program	transmits	data	at	10	readings	per	second.	The

second	program	processes	data	20	times	per	second.

Notice	also,	in	the	Send	program,	the	dummy	variables	x2	and	x3.	In	this	particular

situation,	only	one	of	the	three	available	integers	is	needed.	We	set	the	other	two	parameters

to	zero	and	ignore	them.

78

CHAPTER	10.	INTER-ROBOT	COMMUNICATION

10.3

Exercises

1.	Describe	a	method	for	sending	the	current	touch	sensor	value	to	a	second	brick.	The

difficulty	here	is	that	the	touch	sensor	is	a	boolean	value	and	transmitted	values	are

integers.

2.	Describe	a	method	for	sending	a	single	character	value	to	a	second	brick.	The	difficulty

here	is	that	data	is	of	character	type	and	transmitted	values	are	integers.	(Hint:	the

ASCII	table	is	a	good	place	to	start.)

3.	Describe	a	method	for	sending	an	array	of	integers	to	a	second	brick.	Your	method

must	account	for	the	size	of	the	array	and	the	timing	of	the	transmission.

4.	Using	a	pair	of	bricks,	build	a	remote	light	sensor.	The	remote	brick	will	transmit	the

light	sensor	value	to	the	displaying	brick	every	tenth	of	a	second.	The	displaying	brick

will	show	a	sliding	bar	graph	(as	in	Exercise	8.3.1).	What	is	the	range	of	the	wireless	transmission?

5.	Using	a	pair	of	bricks,	build	a	remote	controlled	tri-bot.	One	brick	will	have	a	set	of

controls	that	will	control	the	speed	and	direction	of	the	tri-bot.	The	second	brick,	the

tri-bot,	will	receive	the	commands	and	execute	them.

Document	Outline
Introduction

External	References
Why	Robots?

Hardware	and	Software
Hardware
Software
Exercises

The	Display
Hello	World!
Program	Dissection
Beyond	Words
Exercises

Sensors	and	Functions
Variables
Assignments
Formatted	Output
Using	Sensors
Functions

Local	variables
Pass-by-value	vs.	pass-by-reference

Exercises
Decisions

Boolean	Algebra
Conjunction
Disjunction
Negation
Boolean	Expressions

Comparison	Operators
Conditional	Statements

If-statements
If-else	statements

Mathematical	Expressions
Basic	arithmetic
Integer	arithmetic
Exponentiation
Randomness

Exercises
Loops	and	Arrays

While-loops
Break	statements
Arrays
For-loops

Two-Dimensional	Arrays
Exercises

Motors	and	Motion
Motors

Motor	Arrays
Basic	Motor	Control

Turning	and	Motor	Synchronization
Distance	and	Motor	Encoders

Circumference
Precise	Distances
Named	Constants

Exercises
Tasks	and	Sounds

Tasks
Sounds

Music
Other	Sounds

Exercises
Files

Memory:	Bits	and	Bytes
Reading	and	Writing
Exercises

Inter-Robot	Communication
Simple	Communication	Functions
Message	Timing
Exercises

	3.1
	here1.
	8
	4.1.
	4.2.
	4.3.
	4.4.
	4.6
	4.8.
	here2.
	4.1,
	5.1.
	5.3
	5.2
	5.4.
	5.6
	seeds3.
	6.1.
	6.2
	6.4
	6.5.
	6.6
	6.8
	7.1.
	7.1
	7.2.
	here.1
	7.2,
	2
	8.1.
	8.1
	6.6,
	8.2.
	8.2,
	9.1.
	9.3
	9.4
	9.1
	4
	10.1.
	10.1
	Introduction
	Hardware and Software
	Software
	Exercises
	The Display
	Formatted Output
	Functions
	Local variables
	Decisions

