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Introduction

This book is part of a sequence of books' written as a technical support
for students in finance. In this book and the companion book?, we complete
the presentation of the mathematical tools useful to understand the theory
of finance. Here, we focus on mathematical analysis and linear algebra. Part
I essentially recalls concepts and properties the reader should know after
(and for some students, before) an undergraduate program in economics and
finance. We encourage the reader to download the four books because in any
of the four books we often refer to the others.

The book is divided in four chapters. Chapter 1, entitled "Preliminaries"
recalls elementary definitions and results about sets, mappings and real num-
bers. The second chapter deals with functions of one variable. Even if most
financial models include functions of several variables, it is essential to be
comfortable with concepts like continuity, limits, logarithms, exponentials,
and derivatives. Chapter three explains integrals, and more precisely how
Riemann integrals are built. Understanding (and keeping in mind) these in-
tegrals is also important not to be too surprised when starting the study of
stochastic processes and It6 integrals that appear in continuous-time financial
models.

Finally, chapter four recalls the rules of matrix calculus and elementary al-
gebraic operations on matrices. It ends by studying the way systems of linear
equations are solved. The companion book (Part II) develops vector spaces
and linear mappings, functions of several variables and non-linear optimiza-
tion. Therefore, students who have a clear understanding and remembering

of the basic tools exposed in Part I can go quickly to Part II.

'Roger. P (2010a), Probability for Finance, Roger. P (2010b), Stochastic Processes
for Finance, www.bookboon.com
2Roger. P (2013), Analysis and Linear Algebra for Finance, Part II.
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Chapter 1
Preliminaries

This chapter recalls definitions and properties of sets, relations, mappings
and sequences. Section 1.1 deals with sets and subsets, their specification,
the way they are built and some elementary operations on them like union,
intersection, or inclusion. Sets are fundamental mathematical objects in
finance, first at the theoretical level through probability theory, and second
at the empirical level, because many studies focus on some categories of
stocks (that is subsets of the set of stocks traded on the financial market)
or on some subsets of investors (fund managers, individual investors, young
investors, etc.).

Relations are also an important concept, especially in microeconomics.
In this domain, the most important relations are preference relations over
bundles of goods or over lotteries when risk is introduced. In finance models,
preference relations are also used on the set of portfolios. For example, in
standard portfolio choice theory of Markowitz!, a portfolio is characterized
by its expected return and variance of returns. An investor is supposed to
prefer a higher expected return and a lower variance of returns. She is then
assumed to be able to rank portfolios and, of course, to select the best one.

Mappings also appear as an intuitive tool to establish a link between two

'"Harry Markowitz (1952), Portfolio Selection, The Journal of Finance, 7(1), 77-91.

Download free eBooks at bookboon.com



sets. For example, a lot was said recently about ratings given by agencies
like Standard & Poor’s, Moody’s or Fitch. The mapping "Moody’s" could
be defined as the pair (Country, Rating) where a country name is associated

to the grade given by Moody’s to this country.

1.1 Sets and subsets

As said above, it is important for finance students to be comfortable with
sets and subsets. Most models in finance are based on probability theory;
probability measures are defined on subsets of a "big" set, coined by econo-
mists "the set of states of nature". This set is an abstract way to consider
all possible economic situations that can show up in the future.

But sets and subsets also appear in much more concrete situations. For
example, many empirical studies distinguish large market capitalizations,
medium caps and small caps which are distinct subsets of the set of traded
firms. Eugene Fama and Kenneth French? generalized the Capital Asset Pric-
ing Model to include other factors than the return on the market portfolio.
Mainly, these factors are size and book-to-market factors. It follows that in
many studies in finance, firms are sorted or double sorted (by quintiles or

deciles) on size and/or book-to-market.

1.1.1 Definition and properties

Definition 1 A set E is a collection (not necessarily finite) of well defined
objects. Members of E are called elements.

- If an object a is an element of the set E, we write a € E (a belongs to

E).

2Fama E. F., French, K. R.(1992), The Cross-Section of Expected Returns, Journal of
Finance, 47 (2), 427-465.

Fama, E. F. and K.R. French (1993), Common risk factors in the returns on stocks and
bonds, Journal of Financial Economics, 33, 3-56.
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- If a is not a member of the set E, we write a ¢ E (a does not belong to

Example 2 1. The set of students having downloaded this book since its

publication.

2. The set of stocks traded on the New York Stock Exchange at the end of

December this year.

3. The set of positive integers N ={0;1;...;n; ...} or the set of all integers
(positive or negative) denoted Z ={... — n; —n + 1;..0; 1; ...;n; ...}

4. The set of clients of Citigroup.

5. The set Q of rational numbers (that is numbers written ™ where m,n
are elements of 7 , n#0).

A set can also be defined by some properties of its elements. Let E be

the set of solutions of the following equation:
E = {z € Qso that 2> —1 =0} (1.1)

It appears that this set is defined implicitly because E' is not defined as a
list of elements. In other words, the definition of E necessitates neither to be
able to calculate the solutions of the equation nor to know if solutions exist.
Of course, finding the number of elements of E may be quite tricky when the

definition is implicit.

Definition 3 The cardinality of a set E, denoted Card(E) or #(F) is the

number of elements of E.

We can easily prove that Card(E) = 2 when E is the set defined by (1.1).
The equation 22 — 1 = 0 has two solutions, respectively equal to —1 and 1.

But it is not always that simple. Many sets have an infinite cardinality. It
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is the case for the sets N (positive integers) and Q (rational numbers). We

then write Card(N) = +o0, Card(Q)

no element, called the empty set.

= 400 . There also exists a set with

Definition 4 A set with no elements is called the null or empty set . It is

denoted ).
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1.1.2 Comparison of sets: inclusion, union, intersec-

tion and complement

Definition 5 Let A and B be two sets; A is included in B, and we write
A C B, if any element of A belongs to B. A is called a subset of B.
The set of all subsets of B is denoted P(B).

1. The set of odd positive integers is a subset of N, the set of positive

integers.

2. If B is the set of students having downloaded this book, the set A of
students having downloaded the book and clicked on all ads it contains

is included in B.

3. The set of U.S stocks with a market cap greater than $1 billion is a
subset of all stocks traded on the U.S market.

4. The three sets N, Z and Q are related by the following inclusions:

NCZcCQ

It is worth to notice that the empty set is included in any set. It implies
that () is always an element of the set of subsets of B, whatever the set B
under consideration. In other words, ) is an element of P(B). We come back
later on to this property.

The inclusion relationship allows to define the equality of two sets.

Definition 6 Two sets A and B are equal, and we write A = B, if AC B
and B C A.

We are now ready to define some elementary operations on sets, in par-
ticular the union (intersection) of two sets. These are quite natural concepts

often used in empirical studies. For example, when studying the behavior of
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individual investors, it is interesting to know if their portfolio diversification
choices have consequences on the return they obtain. A natural way to ad-
dress this issue empirically is to double sort the set of investors, according
to the number of different stocks they hold, and to the range of returns they
obtain. Investors then belong to categories, each investor being in one and
only one category.

In statistics, the independence y2-test is also based on a classification of a
sample according to two variables. If the variables are not independent, the
frequencies in subsets are far from what is expected under the independence
hypothesis.

Let now E be a set and A, B denote two subsets of E.

Definition 7 1) The intersection of A and B, denoted AN B, is the set
defined by:
ANB={a€ E sothatac Aandac B} (1.2)

2) The union of A and B, denoted AU B, is the set defined by:
AUB={a € FE sothatac€ Aorac B }
3) The complement of A in E, denoted A, is the set defined by:
A°={a € FE so that a ¢ A}

Part (3) of the above definition implies that an element a cannot be at
the same time in A and in A. But an element a belongs to A or to A°. This

remark implies:

ANA°=Qand AUA°=F

Proposition 8 Let A, B,C denote three subsets of a set E; intersection and
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umion are distributive wn the following sense:

AniBuc) (AnBjuidAnc)
Au(Bnc) = (AuB)n{Auc)

Simple relations are also established between the complement of an in-

tersection {union) and the union {intersection) of the complements.

Proposltion 9 Let A and B denote twe sudbsets of a set B we have;

(AN By ATu B
(AUBY = A°nB°

The first relation 1a easily understandable when looking at figure 1.1
When a & AN E, either it belongs to A° or it belongs te BT, Finally, a is an
element of A7 L B9 The interpretation of the second equabty 13 simmlar.

Fioure 1.1° Two subseta A and B and their intersection

SUppose now vou want to count the number of Uls firms with more than
1.000 emplovees (subset 4) or with revenues greater than 31 mlhon (aubser
E). If you simply add the number of firms with more than 1,000 employees

13
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and the number of firms with revenues higher than $1 billion, you count twice
the firms belonging to the two categories, that is A N B. Consequently, it is
necessary to subtract the number of these firms in A N B. This calculation

is written in the general case as follows.

Proposition 10 Let A and B be two subsets of a set E. We then have:
Card(AU B) = Card(A) + Card(B) — Card(AN B) (1.3)

Consider for example the two sets A = {1,4,7,9} and B = {2,4,5,9}.
We observe Card(A) = Card(B) =4 but AUB = {1,2,4,5,7,9} leading to
Card(AU B) = 6. Of course, Card(A N B) = 2 because AN B = {4,9}.

Definition 7 can be generalized to any finite number of sets.

Definition 11 Let E be a set and Ay, As, ..., A, be subsets of E.
1) The union of sets A;,i = 1,...,n, denoted U A;, is the set defined
by:
P A ={a€ E sothat Ji € {1,2,....,n} witha € A; }
2) The intersection of sets A;,i = 1,...,n, denoted NI A; is the set
defined by:

N A, ={a€FE sothatVie {1,2,...n}, a€ A; }

It is important to note that for the union of sets, we use the quantifier
3 (it exists), which is associated to the logical connective OR in computer
programming, whereas for the intersection we use V (whatever) which is

associated to the connective AND.

1.1.3 Partitions

In the particular case where pairwise intersections of subsets are empty,

proposition 10 can be simplified. If, in addition, the union of sets under
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consideration is the complete set E, we get what is called a partition of E.

Definition 12 A partition of the set E is a family of subsets Ay, As, ..., A,
satisfying:

A = B

V(’L,j) S {1,2,...,71},i #+7 :>AiﬂAj =0
Example 13 Consider the set of firms rated by Standard and Poor’s (de-
noted E) and define subsets according to the grades received by firms in E.
The union of all subsets is the entire set of rated firms and a firm cannot

be in two subsets at a given moment. The rating system naturally defines a

partition of the set of rated firms.
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1.1.4 The set of subsets of F

Remember that in financial and economic models, the possible future eco-
nomic situations are represented by a set of states of nature. When this set
has been defined (we still denote it E), it is convenient to give probabilities
of occurrence to subsets of this "big" set of states®. In fact, in standard
models where the number of elements of F is finite, a probability measure is
defined on all possible subsets of E. As mentioned before, this set of subsets

is denoted P(FE). The following proposition gives the number of elements® in

P(E).

Proposition 14 Let E denote a set satisfying Card(E) = n; then P(E) has
2™ elements (including the empty set).

Proof. In order to demonstrate this proposition, we use a proof by induction.
It is decomposed in two steps.

1) showing that the statement is true for n = 1;

2) showing that if the statement is true for a given n, it is also true for
n+ 1.

These two steps are sufficient to prove that the statement is always true.

When the set E contains only one element, we have P(E) = {0, £}
and thus Card(P(E)) = 2 = 2!. Assume now that Card(E) = n and
Card(P(E)) = 2". We have to prove Card(P(G)) = 2" where G is a
set with n + 1 elements built by adding one element (say e, 1) to E.

Subsets of GG are divided in two categories, some subsets do not contain
en+1 and the others contain this element. The first category is simply equal to
P(E); its cardinality is then 2". But the second one contains all the elements
which write A U {e, 41} where A is an element of P(F). There are also 2"

3see Roger, 2010a, Probability for Finance, chapter 1.

4In probability theory, it is important to distinguish elements of a set from subsets of
cardinality 1. Indeed, when we write E = {1,2,3}, 2 is an element of E. However, when
we write {2}, it is a subset of E, that is an element of P(E).
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subsets in this category. Finally, we get:

Card(P(G)) =2" +2" =2 x 2" = 2"t}

1.2 Binary relations

Definition 15 Let E and F denote two sets; a binary relation R between
E and F is a property satisfied by a subset of couples (x,y) € E X F; we then
write xRy.

The following definition give a few properties that a binary relation R

might satisfy.

Definition 16 Let a relation R be defined between E and E (we then say
R is defined on E) . R is said:

reflexive if V x € E, xRu;

symmetric if V(zr,y) € E x E, 2Ry < yRuz;

antisymmetric if V(z,y) € E x E,{xRy and yRx} = y=x;
transitive if V(x,y, z) € E*, {tRy and yRz} = R z.

We examine more closely ordering and equivalence relations hereafter
because they are the most common relations appearing in financial and eco-
nomic models. Each category of relations (ordering or equivalence) satisfies

a subset of the properties stated in definition 16.

1.2.1 Orderings

Definition 17 a) A relation R on E is a pre-ordering on E if R is re-

flexive and transitive.
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b) R is an ordering relation if R is reflexive, antisymmetric and transi-
tive.
c¢) An ordering (or a pre-ordering) is said to be complete if for all couples

of elements (z,y) in £ X E we have xRy or yRuz.

Example 18 The most intuitive ordering relation is the inequality < (or >)
on the set R of real numbers. It is easy to check that it is indeed a complete

ordering relation.

In microeconomic models, preferences of consumers over bundles of goods
are pre-ordering relations. Within utility theory, we associate to each set of
goods a number (utility) measuring the consumer welfare obtained through
consumption of this set of goods. In this case, it is easy to say if a given
bundle is preferred to another one by comparing utilities with the relation
< . The preference relation is then a complete pre-ordering on the baskets
of goods since any pair of baskets can be ranked. However, this preference
relation is not an ordering as two different baskets can generate the same
utility without being identical. This relation is not antisymmetric in general.

Below are two examples of orderings that are not complete.

Example 19 Fven simple relations may not be complete; for example, con-
sider the following relation on the set of couples of real numbers (denoted
R?):

(1,22) R (y1,92) if {x1 > 11 and x5 > yo}

Two couples © = (x1,23) and y = (y1,y2) satisfy xRy if and only if x is
located in the north-east of y on a graphical representation where the first
number 1s the coordinate on the horizontal axis and the second is the coor-
dinate on the wvertical axis. It is then easy to define couples that are not
in relation such as the elements with coordinates (3;2) and (1;4). We have
3> 1 but 2 < 4. The relation R is then a partial ordering as some couples

cannot be ranked.
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Example 20 In standard portfolio choice theory of Markowit?’, investors se-
lect portfolios according to the trade-off between expected return and variance
(or standard deviation). A portfolio is then characterized by a pair (u,o).
Investors are looking for a high expectation p and a low standard deviation

o. In this framework, we could define an ordering relation by

(b1, 01) R (ko 02) if {1y = piy and o1 < 02} (1.4)

meaning that (u,,01) dominates (uy, 02) because portfolio 1 has a higher

expected return and a lower variance.

1.2.2 Equivalence relations

Definition 21 A relation R is an equivalence relation if it is reflexive,

symmetric and transitive.

Equality is an equivalence relation on the set of real numbers. It is easy

to check that for every triple (z,y, z) of real numbers, we have:

r =
T = yYySyY==z

Ifr = yandy=zthenz =2

Consider now an economy with two goods. We say that an agent is in-
different between (x1,z2) and (y1,y2) if and only if (z1,x2) = (y1,y2) and
(y1,92) = (r1,72). We usually write (z1,22) ~ (y1,¥2), meaning that the
agent is indifferent between the two pairs. The relation "~" is an equivalence
relation. It is reflexive because > is reflexive, it is symmetric by definition,

and transitive as > is itself transitive’.

®Markowitz, H. 1952, Portfolio Selection, The Journal of Finance, T(1), 77-91.
In the companion book "Probability Theory" (Roger, 2010), you can understand why
equivalence relations are important. In fact, when dealing with continuous random vari-
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1.3 Mappings

1.3.1 Definitions and general properties

A binary relation R is characterized by three elements; the set F (input set),
the set I’ (output set) and the subset G of F x F' defined by:

G ={(z,y) € E x F so that zRy}

G is called the graph of relation R. Consequently, a relation R is com-
pletely defined by the triple (F, F,G).

Definition 22 A mapping is a triple (E, F,G) so that every element of E
is associated to one, and only one, element of F. A simple notation for a

mapping is f with input set E and output set F' so that:
reF — f(x)EF (1.5)

x — f(z) means that x and f(z) are related, that is 2R f(x). The graph
of the mapping f is then:

G={(x,f(x)),z €L}

For a given mapping f, any € E has only one image f(x) € F. This

does not mean that two different elements of E cannot have the same image.

Definition 23 Let f be a mapping from E to F; the range of f, denoted
f(E) is the subset of F' defined by:

f(E)={y € F so that 3x € E withy = f(z)}

ables characterized by a density, we see that a density can be changed on a finite number
of values without changing any moment of the random variable. In other words, it is easier
to identify under an equivalence relation all variables that are equal almost everywhere.
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It turns out that for any mapping from E to F, f(E) C F.

Proposition 24 Let E; and Ey be two subsets of E and f be a mapping
from E to F; we then have:

1) By C By = f(Ey) C f(E2)

2) [(ExUEz) = f(E))U [(E2)

3) f(Ex( E2) C f(E1) ) f(E2)

Although the notation f(FE;) is explicit, one needs to keep in mind that
f associates elements of F' to elements of £/ and not subsets of F' to subsets
of F.
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Definition 25 Let F} be a subset of F'; we call reciprocal range of F;
under f, and denote f~*(F}), the subset of E defined by:

fHF) ={z € E so that f(x) € F}}

f71(F}) is thus the set of elements of F whose image is in F}.
The reciprocal range has also interesting properties which are especially

important in the definitions of random variables.

Proposition 26 Let F; and Fy be two subsets of F'. We have:
a) iy C Fy = f7Y(F) C fH(F)
b) f[HAUR) = (R)Uf (R
c) U RN Fe) = fHEF) N fH(F)
a) fIf ' (R)]C kR
e) If B\ CE, Ey C [~ [f(EY)]

1.3.2 Injective, surjective, bijective mappings

Definition 27 A mapping f from E to F is:

-ingective if :
V(z,2") € Ex E,xz# 2 = f(x) # f(2)
-surjective if :
Vy € F,3z € E such that y = f(x)

-byjective if [ is both injective and surjective. It is also called a one-to-

one mapping.

The definition means that injective mappings preserve separateness. Two

different elements of E always lead to two different elements of F.
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A surjective mapping is characterized by f(E) = F. When a mapping
is bijective, every element of E has a unique image and every element of F
is the image of a unique element of F. It allows to define what is called the

inverse mapping of f.

Definition 28 Let f be a bijective mapping from E to F'; there exists an

inverse mapping from F to E, noted f~1, so that for all elements y of F,
fHy) =z withy = f(x).

For example, the mapping # € R — f(x) = 2° is bijective. The inverse

mapping f~! is defined by:

(S

)=y
We then have:

re€E— fla) e F— f[Yf(x))=2x€E

Remark 29 The reader can easily observe that mappings x — x™ are not
bijective when n is an even integer since f(x) = f(—x). Figure 1.2 illustrates

this remark.

f(x)

0 0.5 1
X

Figure 1.2: The mapping z — f(z) = z*
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1.3.3 Compounding mappings

Definition 30 Let E, F,G be three sets, f be a mapping from E to F and
g be a mapping from F to G ; the triplet (E,G,R) defines a mapping from
E to G where the relation R s characterized by:

TRz if z = g(y) withy = f(x)
Denote h the mapping composed as follows:
v€E— f(z)e F—g(f(z)) =h(z) €G
The composition of two mappings is also written go f. We can thus write:

go f(z) =g(f(x)) = h(z)

Definition 31 Let E be a set; the identity mapping of E denoted ip is
the mapping defined from E to E by:

Ve e E ig(z) =1

When a mapping f from E to F is bijective, we know that there exists
an inverse mapping f~! from F to E so that f~1(f(z)) = x, consequently
f~lo f =ig. Of course, the mapping f o f~! is equal to iz as the input set

is F' and the output set is F.

Proposition 32 Let E, F,G be three sets, f a bijective mapping from E to
F and g a bijective mapping from F to G; the map g o f is bijective and we

have:

(gof) '=fog

The intuition behind this result is straightforward; every element z of

G has only one predecessor y € F' under the mapping g. Also, y has only
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one predecessor x € E under the mapping f. It follows that z has only one

predecessor under the composition g o f.

1.4 Topology of R

"Open, closed, interior, frontier" are words of everyday life. These words have
a precise mathematical meaning in a field of mathematics named topology.
Here, we focus on the simple case of R, the set of real numbers. We are first
going to give mathematical definitions of the abovementioned words and of
some others and we then justify the definition of the set R.

The first subsection explains why it is necessary to build a set like R,
compared to "smaller" sets like N, Z or Q. Properties of sequences of real
numbers appear in subsection 2. Sequences appear in many finance prob-
lems, the most simple example being discounting. When a financial security
generates a sequence of future cash-flows, valuing this asset necessitates the
use of a sequence of discount factors. More generally, standard equilibrium
models are built around a tatonnement process. Proposing a price gener-
ates demand and supply. When demand is greater than supply, a higher
price is proposed. The process restarts for a second step and possibly many
successive steps to reach the equilibrium where demand equals supply. The
sequence of successive prices converges to the equilibrium price. It is the rea-
son why we present the convergence properties of sequences of real numbers

in this section.

1.4.1 The set of real numbers

In section 1.1 we saw the following inclusions:
NCZcQ

But the Pythagorean theorem shows that some numbers do not belong
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to ). Consider a triangle ABC right at A such that the lengths of AB and
AC are equal to 1 (see figure 1.3). The question 1a: what 15 the length of
BCTT We know by the Pythasorean theorem the square of the lenoth of BC
12 2. Consequently +'2 denotes the length of BC.

A

B C

Figure 1.3. Right triangle at A with length 1 for AR and AC

i . = . . .
Therclore it is easy to check if +/2 is a rational number. If 'y"li:] was writben

aa an irreducible fraction n/m, we should pet

This equality implies that »° 13 an even number. But, in this case, n 13
alzo an even number. Consequently, n” can be divided by 4 and m® is then

even  But if n and m are even numbers, there 12 a cantrachiction hecause

the fraction #»/m 15 not arreducible. 1t shows that we need a larger set of
numbers {compared to 1)) to measure some lengtha Thiz aet 13 the =et of
real numbers, denoted B

Upper and lower bounds

Subsets of real numbers are characterized by properties requiring the in-
treduction of the notions of bounds. They are also tundamental to study

gegquences of real numbers.

26
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Definition 33 a) Let E be a subset of R. A real number M € R is an upper
bound of FE if:
Vee B, <M

b) m € R is a lower bound of E if:
Vee E, x>m

Upper or lower bounds do not always belong to E. For example if £ =
{z € R such that x > 0 and = < 1}, any upper (lower) bound of F is greater
or equal to 1 (lower or equal to 0) and does not belong to E.

It may happen that a set has no upper/lower bound. The set of real
numbers, R, is such a set. Moreover, when a subset E of R has upper(lower)
bounds, one of these is lower (greater) than the others. It is called the

supremum (infimum) of E.

o,

WY
{
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Definition 34 a) The supremum of a subset E of R is the lowest upper
bound of E. In the same way, the infimum of E is the greatest lower bound
of E.

b) A subset E is bounded if it has a supremum and an infimum.

0 is the infimum of N but this set has no supremum. Q has neither a
supremum nor an infimum. These notions allow to characterize R, the set of

real numbers.

Proposition 35 Any nonempty subset E of R that has an upper (lower)

bound has a supremum (infimum) in R.

This proposition is the essential distinction between rational numbers and
real numbers. Let A = {x € Q such that z < \/5} ; A has no supremum in
Q since the lowest upper bound of A is v/5. In other words, for any rational

upper bound of A, you can find a lower one (closer to v/5).

Remark 36 The proposition has important consequences for empirical is-
sues. If E has a supremum in R, say b, it is unique. Though b is not
necessarily in E, it means that you can always find in E a number which is

as close as you want of b. More precisely:

Ve >0,dzv € E such that 0 <b—x < ¢

Intervals

The most usual subsets of R are intervals, defined as follows.

Definition 37 An interval is a subset I of R defined by:

V(z,y) e I x I,VYa e [0;1],ax+(1—a)y e [
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The interpretation of this definition is as follows. As soon as a and b
belong to I, every number between a and b is also an element of I. Geo-
metrically speaking’, when o goes from 0 to 1, ax + (1 — a)y goes from y
to x. In a more general framework, we will see later on that this property
characterizes convex sets.

Intervals can be open, closed or semi-open(closed), depending on the fact
that the ends of the interval belong or not to the it.

Table 1.1 gives some examples of each category of intervals.

Type Example

open 10;10[={z€R / 0 <z <10}
semi-open(closed) | [-1;3[={z€R / —1<z<3}
closed 3;5]={zeR / 3<z<5}

Table 1.1: Examples of intervals

It may happen that one of the two ends of an interval is infinite. For
example, the interval [y; +oo[ denotes all numbers greater or equal to y. It is

a semi-closed interval but remember that +o0o does not belong to R.

Open and closed sets

When dealing with optimization problems (issues addressed in Part II), we
will see that knowing if the function to be optimized is defined on an open

or on a closed set is important.

Definition 38 Let F be a subset of R. y € E is interior to E if there exists
e > 0 such that |y — e;y + e[ C E. E is then called a neighborhood of y.

The interval |y — €;y + €[ can also be written

{z € R such that |z —y| < ¢}

"When « € [0;1], the combination ax + (1 —«)y is called a convex combination. When
there are no constraints on «, az + (1 — a)y is called an affine combination.
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Example 39 Consider the set E = [0;5]; any y € ]0;5[ is interior to E.
To see why, define € = %min (y; 5 —y); it is easy to verify that |y — e,y + €[
C E. On the opposite 0 and 5 are not in the interior of E because any open

interval centered on one of these numbers is not included in E.
We can now provide the general definition of open and closed sets in R.

Definition 40 a) A subset E of R is open if any element of E is interior
to E.
b) A subset F' of R is closed if its complement F° (in R) is open.

Remark that open (closed) intervals are open (closed) subsets® of R. The
interval [3; +o00] is closed according to the above definition because the com-
plement |—o0; 3] is open; more generally, intervals like |—o0; a] or [b; +o0o[ are
closed sets. It follows that the (complete) set R is simultaneously closed and
open. But the complement R€ is equal to &. Consequently the empty set is

also closed and open.

Definition 41 a) The interior of a subset E of R, denoted E°, is the set
of elements in E which are interior to E; it is also the largest open subset
included i E.

b) The closure of a subset E of R denoted E is the smallest closed set
containing E.

c¢) The exterior of a subset E of R is the interior of the complement E°.

d) The frontier of a subset E of R is the set of elements which are neither

interior nor exterior to E. It is also called the boundary of E

The interior of an interval [a;b] is the open interval |a;b[. This result is
quite intuitive; but look at what is going on when £ = Q. It turns out that

the interior of Q in R is the empty set. For any rational number x (written

8For more general sets, for example sets of functions, openness and closedness are not
so intuitive, contrary to what we note here.
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™ where m and n are integers) and any € > 0, the interval }% -2+ 5[
contains irrational numbers which are not elements of £ = Q. Consequently
E° = @. We also deduce that the closure of Q is the set of all real numbers R.
It explains why calculators or spreadsheets do not make large errors though

they use only rational numbers.

Proposition 42 A subset E of R is bounded if there exists an interval |a; b|
such that E is included in |a;b|.

In other words, a set E is bounded when it has a lower bound and an
upper bound. However it is not mandatory that the bounds belong to E. An

open interval ]a; b is an example of such a bounded set.

Definition 43 A subset C' of R is compact if it is at the same time closed

and bounded.

Remark 44 This definition is true for sets in R or R™ (the set of n-tuples
of real numbers (x4, ..., z,)). In more general frameworks, this definition has
to be changed (this issue is addressed in part II). Compact sets are important
to establish some properties of continuous functions, described later on in

chapter 2.

1.4.2 Sequences of real numbers

Example 45 Assume you invest $100 in a savings account on January, 1,
next year, at a 4% interest rate. Interests are paid at the end of the year and
are annually compounded (you get x1 = $100 x 1.04 = $104 at the end of the
first year). As interests are compounded, you will get x5 = $104 x 1.04 =
100 x 1.04% at the end of the second year. More generally, your investment
s worth x, = 100 x 1.04™ at the end of year n.

T, can also be written x,, = x,_1 X 1.04 and the ratio L2t

Tn

18 constant over
time, equal to 1.04. We will see later on that this characterizes a geometric

sequence.
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Assume now that the banker says that he sells a product paying a 4 %
yearly interest rate. The meaning of this sentence depends on the frequency at
which interests are compounded. With a monthly frequency, interest received
after one month produce interests in the future. In this case, an investment
of $100 at the beginning of the year is worth

04\ 12
100 x (1 + %) = 104.07

at the end of the first year.

More generally, when interests are paid n times a year, the final amount

04\"
mw(uﬂ)
n

The question is to know what is the amount obtained when interests are con-

18:

tinuously compounded, that is when n tends to infinity. The notion of limit
of a sequence of real numbers, and more generally the concept of convergence

of sequences, is necessary to answer this question.

Convergence of sequernces

Before defining precisely limits and convergence, we characterize what we

call a sequence of real numbers.

Definition 46 A sequence of real numbers is a mapping f from N to R

denoted n — f(n). A simplified notation is (x,,n € N) where f(n) = .
Consider the following examples:

1. (zp,n € N) = (2n,n € N)
2. (zn,n €N) = (5,neN)

3. (xn,m eN)=((-1)",n €N)
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4. (z,neN) = ((2)",n eN)

3
6. ro=0;21 =1
Tp =Tp_1+ Tp_2, M > 2

The two last sequences are different from the first four ones because they

5 Tog = 1
' Ty = mnfl+1’n c N*

are not defined directly as functions of n. They are defined by induction, that
is the n-th element is defined as a function of the preceding elements.

These sequences behave differently when n increases. The first one in-
creases without limits. The second one has positive elements that decrease
to 0 when n increases. The elements of the third one alternate in sign and
are always equal to 1 or —1. Elements of the fourth one also alternate in sign
but their absolute value decreases to 0. Finally, it is difficult to know the
behavior of the fifth one without calculations.

The last sequence is the so-called "Fibonacci sequence"; it was described
by Leonard from Pisa in the Liber abaci written in 1202°. This sequence
increases without bounds but it is famous because the ratio of two successive
terms x,,/x,_; tends to the gold number (approximately 1.618) when n tends

to infinity!?.
Definition 47 a) A sequence (x,,n € N) converges to a limit a € R if:
Ve >0,INe N/ Vn> N, |z, —a|l <e

We then write lim,, ., o, ©,, = a.

9Leonardo Fibonacci (trad. Laurence E. Sigler), Fibonacci’s Liber abaci : A translation
into modern English of Leonardo Pisano’s Book of calculation, Springer-Verlag, 2002

10Today, the Fibonacci sequence is used in finance in some methods of technical analysis
(see for example: Deron Wagner (2012), Advanced Technical Analysis of ETFs: Strategies
and Market Psychology for Serious Traders, chapter 4, John Wiley & Sons Inc.
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b) A Cauchy sequence is a sequence (x,,n € N) such that |x; — x;| tends

to 0 when i and j tend to +oo.

The first part of this definition shows that convergence does not change
if we delete a finite number of elements in the sequence. This remark comes
from the fact that N is not specified in the definition (it may be 10 or
10,000,000 or any number). The only important fact is that N exists.

Proposition 48 1) Fvery Cauchy sequence of real numbers converges to a
limit.

2) If a sequence (r,,n € N) converges to a limit, this limit is unique.
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In the 6 abovementioned examples, it is easy to see that sequences 1 and
3 do not converge. The first one increases without bounds (we say it tends
to +00) and the second one takes alternatively values 1 and —1. On the
opposite, sequence 2 converges to 0. Using definition 47 we observe that
being given ¢, it is sufficient to choose N as the smallest integer greater than
g/ig. Sequence 4 is specific because it takes alternatively positive and negative
values but eventually converges to 0.

Sequence 5 is defined by induction so studying convergence may be more
complicated. However, in this case, we know that xo = 1, and x,, < x,_1.
It is then strictly decreasing and always positive; the intuition says that it
should converge. The next proposition shows it is the case by giving a clear

convergence criterion.

Proposition 49 Let (z,,n € N) a sequence of real numbers :

- If there exist a € |0;1[ and N € N such that <« forn > N, the
sequence (r,,n € N) converges to 0.

- If there exist « > 1 and N € N such that

tends to +oo when n tends to +oo .

Tn

Tn—1

In
Tn—1

> a forn > N, |z,|

We can also complete this proposition by the following result: any con-
vergent sequence of real numbers is included in a closed interval. Moreover,
remember that we defined compact sets as closed and bounded sets. In gen-
eral spaces, a compact set is a set in which any sequence has a convergent
subsequence. It is a kind of reciprocal of the above result. We cannot say that
any sequence in a closed interval is convergent but one can find a convergent

subsequence because closed intervals are compact.

Some specific and useful sequences

Two special cases are very useful when dealing with practical problems,
namely arithmetic and geometric sequences. These two types of sequences

have become famous because they are essential elements of the theory of
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Reverend Thomas Robert Malthus (1798). He assumed that available food
increases in an arithmetical ratio, but simultaneously, the population dou-
bles every twenty-five years, that is according to a geometrical progression.
Consequently, if population growth is not limited, a food shortage should

come in a few decades!

Definition 50 a) An arithmetic sequence with ratio a € R is a sequence
(xn,n € N) such that for n > 0, we have :

Tp =Tp-1+0a

where the first term xy may be any real number.
b) A geometric sequence with ratio ¢ € R is a sequence (x,,n € N) such
that for n > 0, we have :

Tp = CTp1

where the first term xoy may be any real number.

For these specific sequences convergence criteria are quite intuitive. They

are summarized in the following proposition.

Proposition 51 a) Any arithmetic sequence with a non zero ratio a does
not converge. It increases (decreases) without limits if a > 0 (a < 0).

b) A geometric sequence converges to 0 if the absolute value of the ratio c is
strictly lower than 1, otherwise it does not converge. It increases (decreases)
without bounds if xo > 0 and ¢ > 1 (xg < 0 and ¢ > 1). When ¢ < —1, the

successive elements alternate in sign and the sequence does not converge.

Proposition 52 a) Let (x,,n € N) denote a geometric sequence with ratio

¢, different from 0 and 1; we have:

N
Z 1— CN+1
Iy = X
" R
n=0
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b) If |c| < 1, the limit is given by:

N

. Lo

1 n = 1.
im nE_O Tn =1 (1.6)

N—+00

Proof. The sum of the first N terms is:

an = x0+cx0+....+ch0

= X (1+c+....+cN)
We know that:
(I4+c+ .+ (1—c)=1-c"

it then follows: 1 N1
N_17¢
1-c

The result of the proposition follows immediately. m

l+c+...+c

In real data, it is common to deal with monotonic sequences, defined as

follows.

Definition 53 A sequence (z,,n € N) is increasing if for anyn > 0, x,, >

Tn_1. It is decreasing if the reverse inequality is true.

Convergence criteria of monotonic sequences are simpler than the general

criteria.

Proposition 54 a) An increasing sequence (x,,n € N) which is bounded
above is convergent. The limit a is the lowest upper bound of the set of
values {x,,n € N}.

b) A decreasing sequence (z,,,n € N) which is bounded below is convergent.

The limit a is the largest lower bound of the set of values {z,,n € N}.
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The following example 55 uses the properties of geometric sequences and

proposition 54 as well.

Example 55 Consol bonds

Consol bonds are bonds first issued by the British government during the
19th century. They are now known as perpetual bonds because they have no
maturity date (in other words they are never reimbursed). The holder of a
consol receives a given amount of interest every year for ever.

Assume you can invest your money at a constant yearly rate r. To get
1 dollar in one year you need to invest 1/(1 + r) dollars today. To get one
dollar in two years you need to invest 1/(1 + r)? today, and so on.

More generally investing x,, = m today at a yearly rate r provides
one dollar in n years. The sequence (x,,n € N) is obviously decreasing and
positive, that is with a lower bound equal to 0.

Proposition 54 implies it converges and it is easy to see that the limit is

0. Consider now the sequence vy, defined by:

Yo = x9=1

Yn = Yn—11+ Ty

Yn 18 in fact the amount to invest today to get 1 dollar every year up to
year n. The sequence (y,,n € N) is increasing because y,, = y,_1 + x, and x,

18 positive. The limit of vy, is obtained if we remark that :

yn:i(lir)k

k=0

In other words it is the sum of the n+1 first terms of a geometric sequence

with ratio ¢ = ﬁ < 1. y, can be rewritten as:
n k 1 \n+1
Y = Z < 1 ) 1-()
n = - 1
0 147 1-— T
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using the relationship 1 —d"™ = (1 — d) >_,_, d* for any number d. We then
get:

n+1
1— (5 1 147
llm (l+7‘1) — - —
noteo T T ~ Tor r

In fact lim,, .y Y, 1S the necessary amount to be invested today to receive
one dollar every year for ever! It is then the current price of a consol paying
one dollar of interest every year. In most cases the bond is paid now but the
first interest is received in one year. It means that the price of the consol will

be Hr — 1 =1
T T
Operations on sequences

If it is natural to add, subtract or multiply numbers, we may wonder if
simple arithmetics has unexpected consequences on limits of sequences. For
example, if two sequences u,, and v, converge respectively to a and b, is it
true that the product u,v, converges to the product ab. The proposition

hereafter answers this kind of question.

Preliminaries
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Proposition 56 Denote (u,,n € N) and (v,,n € N) two convergent sequences
with limits a and b. We then have:

1) limy i oo(tn +v,) =a+b

2) limy,— 4 oo (Unvy) = ab

3)V(z,y) € R X R, limy_, 1 o(TUy + yv,) = az + by

4) Lm0 [un| = |al

5)Ifb#0, lim, o =t

Of course, the proposition is valid only if the two sequences (u,,n € N)
and (v,,n € N) converge. In fact, suppose that one of the two is not conver-
gent (increasing or decreasing without limits for example). In this case, some
of the above questions cannot be answered. For example, in part (2) of the
proposition, let us assume u,, — 0 and v, — 400. Anything can happen; if
v, =n and u, = %, the product is always equal to 1 (and then convergent).
If u,, = n%, the product converges to 0 but, if u,, = \/Lﬁ, the product is y/n and
does not converge. Table 1.2 summarizes the different cases. More generally,

prudence is necessary when applying proposition 56.

Uy | Up, UpVy | liMy, oy oo Up vy,
n | 1/n |1 1
n | 1/n* | 1/n |0
n |1/yn|vn | 400

Table 1.2: Undeterminate cases

Adjacent sequences

A standard method to evaluate an unknown quantity b is to define sequences
x, and ¥, such that :
Tn < b<y,

If (x,,n € N) is increasing and (y,,n € N) decreasing, proposition 54 al-
lows to conclude that these two sequences converge. In addition, if the dif-

ference x,, — y, tends to 0, we are sure that the common limit is the number
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b we were trying to evaluate. This approach will be used to define Riemann

integrals in chapter 3.

Definition 57 Adjacent sequences are sequences (z,,n € N) and (y,,n € N)
such that the first (second) one is increasing (decreasing), and lim,, _, | o (Yn —
x,) = 0.

We deduce from this definition that z,, < y, for any n and get the fol-

lowing result.
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Proposition 58 Two adjacent sequences (x,,n € N) and (y,,n € N) con-

verge to the same limit.

In fact, there is a contradiction between lim,, ., o (y, — x,) = 0 and the

assumption that the limits can be different.

42
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Chapter 2
Functions of one variable

In finance and, more generally, in economics, the word "function" is very
common. One naturally speaks about profit functions, cost functions; port-
folio managers usually recall that the return on a portfolio is a function of
the risk it bears. Most often, a given quantity depends on several others. For
example, the return depends on a given measure of risk but also depends on
the horizon of the investor, on market liquidity, and possibly on many other
variables. However, it is often useful to start with a simple analysis where a
quantity under consideration is assumed to depend on only one variable. We
call these relationships functions of one variable.

In this chapter we start by definitions and elementary properties of func-
tions. Section 2.2 is devoted to limits, continuity and the intermediate value
theorem. In section 2.3, we define and characterize derivatives before devel-
oping their main properties. The next section is devoted to logarithms and
exponential functions. These functions are possibly the most important in
economics and finance. Logarithms are concave and therefore widely used
as models of utility functions. They are also used to calculate continuous
returns on financial markets. Exponential functions are convex and are the

natural tool to discount future amounts of money in continuous-time models.

Finally, the last section of the chapter is devoted to Taylor expansions
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allowing to approximate any sufficiently regular function by a polynomial.
These approximations are also a fundamental tool of economic models. For
example, the Arrow-Pratt coefficient of risk aversion is obtained through a

reasoning using Taylor expansions.

2.1 Definitions and notations

Definition 59 A function of a real variable x is any map f defined on a

set D (input set) included in R and taking values in R (output set). We write:
re€D— fr)y=yeR

or

v f(r) =y

The input set is called the domain of f and the set of possible outputs
f(z) is the range of f. In relation to statistical studies and to econometrics, x

is named the independent variable and y = f(x) the dependent variable.

Example 60 Linear and affine functions
D=R ;x— f(x) =ax + b where a,b € R

When b = 0, f is a linear function. When b # 0, f is an affine
function. When the relationship between two economic variables is affine,
it is easy to calculate the sensitivity of y = f(x) to variations in the indepen-
dent variable x because this sensitivity is exactly equal to a. More precisely,

considering two numbers x1 and xo, we write the sensitivity as

flx1) — f(2)  axy+b—awy—0b

=a (2.1)

X1 — T2 X1 — T2
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Definition 61 1) Let f and g be two functions defined on the same domain
D; their sum f + g is defined as follows:

Ve e D, (f +9)(z) = f(z) + g(x)

2) The product of a function f by a number o € R, written af, is defined
by:
Vo e D, (af)(z) =af(z)

3) The product fg of two functions f and g, defined on the same domain
D, is defined by:
Ve e D, (fg)(z) = f(x)g(z)

4) The inequality f < g means:
Ve e D, f(x) < g(x)

In further chapters devoted to linear algebra, we will see that parts (1)
and (2) in the above definition are essential properties of vectors, meaning
that some sets of functions are in fact vector spaces. The inequality defined
in the last part of the definition is frequently used in microeconomics when f
and g are cumulative distribution functions of payoffs of financial securities.

Such an inequality defines first-order stochastic dominance!.

Definition 62 Let us assume that the domain D of a function f is such that
ifx € D then —x € D.

- [ is said even if for all x € D, f(—x) = f(z)

- f is said odd if f(—x) = —f(x).

Remark 63 The graph of an even function is symmetric with respect to the

y-axis. The graph of an odd function is symmetric with respect to the origin
(0;0).

see Roger, Probability for Finance, 2010a, chapter 1.
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Figures 2.1 and 2.2 illustrate this remark with the even function f(z) = z?
and the odd function g(z) = x®. More generally, any function f(z) = a2 is

even if n is an even integer and odd if n is odd.

f(x)

Figure 2.1: The function f(x) = 2*

2.1.1 Increasing and decreasing functions
Definition 64 Let f be a function defined on D C R and B a subset of D.
f is increasing (decreasing) on B if:

V(z1,22) € B X B,xy > 29 = f(x1) > (L) f(x2)

If the inequalities are strict then [ is said strictly increasing (decreasing)

on B.

When the set B is the entire domain D, we simply say that f is increasing
(decreasing). A function is said to be monotonic if it varies in only one
direction , that is, if it is solely increasing or decreasing on the entire domain
D.
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g(x)
T

-0.5

Figure 2.2: The function g(x) = 23

Example 65 a) A standard hypothesis in economic models is to assume that
the demand d for a given good is a decreasing function of the price p of the

good. The demand function is written p — d(p) and we have:

P < p2 = d(p1) > d(p2)

b) When you buy a given quantity b of stocks, your global cost is an affine
function like c¢(x) = bx+a (where b is the number of stocks and a the fized cost
per trade). x is the unit stock price including the proportional transaction
cost. c(x) is increasing in x because b is positive. One can also describe this
global cost as a function of the number of stocks in the portfolio. In this case,
we can write ¢*(y) = dy + a where d is the unit price, y is the number of

stocks and a s still the fized cost per trade.

Proposition 66 Let f and g be two functions defined on D :
1) If f and g are increasing (decreasing), f+ g is increasing (decreasing).
2) If f and g are positive and increasing on D, the product fg is an

increasing function.
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3) If f and g are both increasing or both decreasing, the compound func-
tion g o f is increasing. If one is increasing while the other is decreasing,

then g o f is decreasing.

Of course, if a and 3 are two positive numbers and if f and g are increasing

(decreasing), the combination af + (g is increasing (decreasing).

2.1.2 Extremum of a function

Optimization, that is the search of extrema of functions, is a rather impor-
tant tool in finance and, more generally, in economics. In microeconomics,
agents are supposed to maximize their expected utility. In portfolio choice
theory, investors maximize the expected return of their portfolio under some
constraints linked to the quantity of risk they are ready to bear. Similarly,
investors may want to minimize the variance of their portfolio return, being
given a level of expected return. These examples show why extrema (minima

and maxima) of functions are so important in financial models.

r
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Upper and lower bounds

Definition 67 Let f be a function defined on a domain D C R:

- A number M € R is an upper bound of f on D if for all v € D,
f(z) < M. If such a number exists, [ is bounded above.

- A number m € R is a lower bound of f on D if for all x € D,
f(x) > m. If such a number exists, f is bounded below.

- A function f is bounded if there are both an upper and a lower bound..

Proposition 68 Let f and g be two functions defined on a domain D. If
they are both bounded above (below), the sum f + g is also bounded above
(below). Moreover, if f and g are positive and bounded above, the product fg

18 bounded above.

Local extremum and global extremum

Definition 69 Let f be a function defined on a domain D :

1) xo is called a local minimum of f if:

do > 0,Vz € |zg — oy x0 + o, f(x) > f(x0)
2) xo is called a local maximum of f if:

do > 0,Vz € |zg — oz + o, f(x) < f(x0)

This notion of minimum (maximum) is said to be local because f(x) is
lower (higher) than f(x) only for x in an interval containing xo. As we used
"Ja > 07, it means that the range of values over which f(x) > f(z) may

be really narrow.

Definition 70 Let f be a function defined on D :

1) xo is called a global minimum of f if:

Ve e D, f(z)> f(xg)
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2) xo is called a global mazximum of f if:

Ve e D, f(z) < f(zo)

Here, the extremum is global because we used "Vx € D”; for a global
minimum (maximum) zy, the function cannot take lower (higher) values
than f(zq) all over the domain D. In financial problems, finding a local
extremum is not always satisfying because you can be far from the global
extremum you were looking for. However, for general functions, there is
no simple way (and sometimes no way at all) to find a global extremum.
Reasonable conditions are obtained when functions exhibit "nice" properties
like convexity or concavity. These properties will be presented later on in

this chapter.

2.2 Limits and continuity

2.2.1 Pointwise limits

Definition 71 Let f be a function defined on a domain D. The function f
has a limit b € R at a € D 1f:

Ve > 0,3\ > 0 such that |z —a| <X\ = |f(x) —b| <e

The limit 1s usually denoted:

lim f(z) =0

r—a

By extension, it is possible, in some cases, to compute the limit of f(x)

when 2 tends to a, even if a is not in the domain but on the boundary of the
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domain. In this case we write:

lim f(z)=10

r—a,r#a

Another way to define the above limit is to say that for any sequence (z,,,

n € N) converging to a, the sequence (f(z,), n € N) converges to b.

Example 72 Let us consider the function f defined by:

r—9
Vz—3

The domain of f is reduced to R\ {9} because the denominator is 0 when

fx) =

xr =9 and the number under the square root must be positive. However, it is
still possible to calculate im,_g .29 f(x) because the numerator of f can be

written as:

9= (Vi-3)(Vi+3)

Therefore f(x) can be simplified because \/x — 3 appears in the denom-
inator and in the numerator of f. It turns out that lim, 9,29 f(z) =
lim, _9(v/x + 3) = 6.

Proposition 73 If a function f has a limit b at a € D°(the interior of D),

this limit is unique.

This proposition is easily understandable by assuming that there are two

different limits b and ¢’ in definition 71. We immediately get a contradiction.

2.2.2 Omne-sided limits

Definition 74 Let f be a function defined on D and a € D°. f has a
right-limit, b € R, at a € D° if:

Ve > 0,3A >0 such that 0 <z —a< X = |f(x)—b|<e
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This limit s denoted:
lim f(z)="5

r—at

In the same way, a left-limit b € R, at a € D° is defined by:
Ve >0,3A >0, we have 0 <a—z <\ = |f(z)—bl <e

This limit is denoted:
lim f(x) =10
We also aim at defining the limit of a function f when x tends to Fooc.
It can only be a one-sided limit (left-limit at +o0o and right-limit at —oo).
We say that f tends to b when x tends to +oo if, for any ¢ > 0, there
exists a > 0 such that:

r>a=|f(r)—-b <e

This limit is written:

lim f(x)=">

T—-+00
In the same spirit, we say that f tends to b when = tends to —oc if, for all
€ > 0, there exists o > 0 such that:

r<a=|flr)-b<e

This limit is written:

lim f(z)="5

r——00

2.2.3 Case of infinite limits

In some cases limits do not exist or are not finite.

Definition 75 f tends to +0o when x tends to a (we note lim f(x) = +00)
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if, for all L > 0, there exists a > 0 such that :
lz —al <a= f(z)>L

The definition is similar (with f(z) < —L) when f tends to —oo.

In the general case where f is defined over the entire real line R, we can
face the situation where f tends to 400 when x tends to +o00. In that case,
we write:

lim f(x) =400

Tr—-+00

Example 76 Denote f the following function

f(@) =1/ (2.2)

The domain D is R* and we easily obtain:

hr&f r) = +00 2.3
liron_f(x) = —00 (2.4)

Remember that v — 07 means x — 0 and x > 0; of course x — 0~ means

z— 0 and x < 0.

2.2.4 Essential properties of limits

The following propositions show that limits of sums/products of functions are
intuitively deduced of the limits of the functions entering the sums/products,

except when some of these limits are infinite.

Proposition 77 Let f and g be two functions defined on a domain D. We
assume that f and g have finite limits b and b’ when x tends to a, that is
limf(x) = b and limg(x) = /. We then have the following properties:
) (s e 20

Download free eBooks at bookboon.com



Analysis and Linear Algebra for Finance: Part | Functions of one variable

2) lim(fg)(x) = b

3) For any real number o, limaf(x) = ab
i L@ b

4}Ifb'7é0,9161ir(11m—y

5) If im f(x) = b then L || (z) = ]

As mentioned above, the rules provided in proposition 77 work only when
the limits b and ¥’ are finite. In the general case (where at least one limit

may be infinite) the computations are a little bit more involved.

Proposition 78 With the same notations as before, assume that b = 400 ;
we then have:

1) limg g 55 =0
2) If g is bounded below, then lim,_,(f(x) + g(x)) = 400
3) If g has a strictly positive lower bound, lim, ., f(x)g(x) = +o00
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Though the two preceding propositions allow to calculate many limits,
some cases remain unclear. If, for example, the limits of the functions f and
g are respectively —oo and +o00, the limit of the sum depends on the rate at
which each function tends toward infinity.

If f(x) = —1/x and g(x) = 1/2?, the sum tends toward +oco when z

tends toward 0. Indeed, we write:

Fo) bala) ==+ 5 =1 (1-3)

r a2 T T

We can write the sum f + ¢ as the product of two terms that both tend
to —oo when x tends to 0. Thus, the product tends toward +oc.The reason
is simply that ¢ goes to infinity much more quickly than f because of the

power 2 in the definition of g.

2.2.5 Continuous functions

The notion of "continuous function" is very intuitive. When one represents
the graph of a function f, saying that this graph is "continuous" simply means
that there is no break in the curve representing f(z). The mathematical
definition of continuity says nothing else. However, it allows to consider the
case of continuity at a given point, meaning that there is no break in the

graph around that point.

Definition 79 A function f : D — R is continuous at xo € D’ if

lim f(z) = f(xo) (2.5)

T—x0

A function f : D — R is right-continuous at vy € D° if :

limf(2) = f(xo)
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A function f is left-continuous at xo € D’ if :

lim f(z) = f(xo)
z—a;

Right and left continuity are often used to describe trajectories of sto-
chastic processes’. For example, the path of the price process of a stock
or an index is often assumed to be a continuous function of time. Figures
2.3 and 2.4 represent the evolution of the S&P500 index for two periods
of time. On the first figure, the evolution covers a ten-year period (2002-
2011) with daily data. The second figure represents one day of tick-by-tick
variations. In the two cases, the continuous approximation does not look
as a too artificial assumption. However, looking more closely to the first
figure raises the question of what happened in September 2008. Maybe a
right-continuity assumption could be justified according to the sudden drop
(remember the Lehman Brothers bankruptcy) in the value of the index. The
two assumptions (continuity or right-continuity) are encountered in financial
models. However, it is worth to mention that introducing the possibility of
jumps in price paths leads to much more complicated mathematical models

of financial markets.

Proposition 80 Let f and g denote two functions defined on D, continuous
at a € D, and let ¢ be a real number. The sum f + g, the products cf and fg
and, if g(a) is different from 0, the quotient f/g, are continuous functions at

a.

2.2.6 Intermediate value theorem

Proposition 81 Let f : [a;b] — R be a continuous function; if f(a) < 0 <
f(b), there exists c € |a;b[ so that f(c) = 0.

2Roger. P (2010b), Stochastic Processes for Finance, www.bookboon.com
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S&P 500 (SP50USA)

1,600

Mw‘l\}\ 1,400
——+1200

———1,000

——+800

‘02 ‘03 ‘04 ‘05 ‘08 ‘07 ‘08 ‘09 10 11

Figure 2.3: Daily evolution of the S&P500 index from 2002 to 2011

Consider figure 2.5 which represents the function f(z) = z? — 4 on the
interval [0;4] . This function satisfies f(0) = —4 < 0 and f(4) = 12 > 0. As
it is of course continuous (and moreover monotonic) the graph crosses the
horizontal axis at x = 2.

This proposition could also be written by replacing 0 by a real number «,
then writing "if f(a) < a < f(b), there exists ¢ € ]a; b so that f(c) = a". For
example, on figure 2.3 consider an index value of 1000. As the minimum value
of the index is around 700 and the maximum at 1,500, there exists at least one
point in time at which the value of the index is 1,000, if we assume that the
index value moves continuously. This example shows that the intermediate
value theorem is very intuitive. It is also easy to understand why continuity
is a necessary assumption of proposition 81. If jumps are allowed in the
evolution of the S&P500 index, we could have an index value of 1,030 at the
market close and an opening value of 990 the day after, without any moment

with an index value equal to 1,000.

Proposition 82 If f is defined, continuous and strictly monotonic on the
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S&P 500(SP50USA)
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131700
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A 131500
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3:30:04 pm 4:12:45pm 4:55:26 pm 5:38:07 pm 6:20:47 pm 7:03:28pm 7:46:09 pm 8:28:50 pm 9:11:31pm 9:54:12pm

Figure 2.4: Tick by tick evolution of the S&P500 on 01/28/2012 (European
time on the X-axis)

interval I = [a;b] with [ C D, we have :
1) f(I) is an interval ending at f(a) and f(b).
2) f is a bijection from I to f(I).
3) The inverse of f, denoted [, is continuous, strictly monotonic, and

varies in the same direction as f.

Proof. (1) is straightforward as f is strictly monotonic.

(2) Assume that f is strictly increasing; f is then injective. Indeed, for two
real numbers z; and xs satisfying z; < x2, we have f(z1) < f(z3). Similarly,
f is surjective from I to f(I) = [f(a); f(b)] as f is strictly increasing.

(3) follows from the fact that the graph of f~! is symmetric to the graph
of f with respect to the first bisector. For example, figure 2.6 illustrates this
property. The graphs of f(z) = z? and f~!(z) = /= on the interval [0; 1]
are symmetric with respect to the first bisector represented by the dashed

line. m
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H r v m w2 n o= E

Figure 2.5: F(z) = 2% — 4

When you study option pricing, you learn that option prices are strictly
increasing functions of volatility. Proposition 82 says that to a given option
price corresponds one and only one volatility level. The consequence is that
professionals often value options by referring to the volatility corresponding
to the observed price, called the implicit volatility. The advantage is that
referring to implicit volatilities allow comparisons between options with dif-
ferent characteristics (maturity, exercise price, etc.) as long as the underlying

stock is the same for the options under consideration.
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Figure 2.6: Craphs of fiz) = z* (lower curve) and f~'(z) = 'z {upper

curve| over the interval [0: 1]

FProposition 83 Let [ be a contmuous funchion defined on a compact do-

mam 0. f hae & mamtmam and a nmenemum on D and reaches s bounds

Remember that a compact set in X is a closed and bounded set [aee
chapter 1). So, consider a sequence {z,..n © M) included in a compact set.
there exists a convergent subsequence.  Denote tor example (. &k € F)
this subsequence and »* the hrit. Sinee f 12 continuous, fix, | converges
to flz*). Applving this reasoning and assuming that [ does not reach its

bounds feads to a contradiction.

2.2.7 Convex and concave functions

Convexity and concavity are the most widely used properties of functions
n economic analysis and finance. When utility functionz are introduced 1n

microsconomics lecturea, one of the first reasonable behavioral azsumptions
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is the decrease of the marginal utility of consumption. It simply means that
utility of consuming one unit of a given good decreases with the number
of units already consumed. Concavity is the technical translation of this
assumption. Convexity appears naturally when compounding interests. The
fact that interest obtained on an investment in period 1 generates interest in
period 2 implies that the marginal increase of the value of your investment

is increasing. This is nothing else than convexity.

Definition 84 1) Let f be a function defined on an interval [a;b] . f is con-
vex if for all o € [0;1] and all couples (x,y) € |a;b] X [a;b] we have:

flaz+ (1 —a)y) <af(z)+(1—a)f(y)

2) Under the same hypotheses, [ is concave if the inequality is reversed.
3) If the inequality is strict in (1), the function is said to be strictly
convez. If the inequality is strict in (2), the function is said to be strictly

concave.

Figure 2.6, used to illustrate inverse functions represented two functions
defined on the interval [0; 1] and taking values 0 at 0 and 1 at 1. The first
function is f(z) = 2% it is convex. On the figure, it can be seen that f
is below the dashed line joining (0,0) and (1,1). It is the main geometrical
property of convex functions. Lines joining two points on the curve are above
the curve. The second function on figure 2.6 is f~'(z) = /7. It is concave
and above the dashed line.

2.3 Differentiation

2.3.1 Derivatives: definitions

In this section, all functions are defined on a domain D and I is an open

interval included in D.
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Definition 85 1) The derivative of f at x¢ € I, denoted f'(xy), is the limit

defined by:
. J(xo+h) — f(x0)
/ —
fwo) = limy h
If the limit f'(xo) exists, [ is said differentiable at x.
2) When f'(xq) exists for all xy in D, f is simply said to be differen-
tiable. The function x — f'(z) is called the derivative of f.

If f is differentiable at g, f(zo + h) can be approximated as:
f(wo+h) = f(xo) + f'(x0)h + e(h)h (2.6)

where ¢ is a continuous function that satisfies limj,_oe(h) = 0. It follows that
any function differentiable at xq is continuous at xg.

The geometric interpretation of the above equality is that, in the neigh-
borhood of xg, the graph of f is close to the tangent (at xy) to the curve

representing f.

Definition 86 A differentiable function f, is continuously differentiable

if the derivative v — f'(x) is continuous. f is then called a C*-function.

Proposition 87 If the derivative of a continuously differentiable func-
tion f is strictly positive (negative) on I, f is increasing (decreasing) on
I. Symmetrically, if f is increasing (decreasing) on I, the derivative f' is

positive (negative) or equal to 0 at any zo € 1.

The following remarks on derivatives are important:

a) The derivative of a function does not necessarily exists. A derivative
at zo can be defined only if x is interior to D, because zy + h must belong
to D for h sufficiently small. For example, the function g(z) = /7 is not
differentiable at 0 as g is not defined on the left of 0. Consequently, for all

negative h , o + h is not in the domain if xq = 0.
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b) For a function to be differentiable, the limit given in the definition
must be the same (and finite) when A > 0 and h < 0. It follows that the

function f(z) = |z| is not differentiable at xy = 0 because:

lim — = 1 2.

hg(r)l+ h (2.7)
A

lim — = -1 2.

hfé{ h (28)

¢) A function which is not continuous cannot be differentiable. A simple

example to illustrate this remark is the following function:

f@%:{lﬂx>0

—1lifx <0

For any x # 0, f'(xz) = 0 but f/(0) is not defined because the sign of h is
not specified in definition 85.

Definition 88 1) The right-derivative of f at xo, denoted f}(xo) is the
limit (if it exists) defined as:

fa(zo) = lim M

x%xé T — o

2) The left-derivative of f at xq, denoted f}(x¢) is the limit (if it exists)

defined as:
fl,(xO) — lim f(ﬂ?) B f(fﬂo)

Tz T — To

2.3.2 Properties of derivatives

The properties of derivatives are not as intuitive as the properties linked to
continuity, especially when considering products of functions. However, these

properties are of constant use and must be perfectly known.
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Proposition 89 Let f and g be two functions differentiable at xo € D and
ceR:

1. (f + 9)'(zo) = f'(w0) + g'(x0)
2. (cf)(zo) = ¢ x f'(w0)
3. (f9)(xo) = f'(w0)g(wo) + f(0)g' (o)

!/ , 3 ,

B

5. Let a(x) = f(x)". We then have:
o/ (z0) = nf'(zo) f(w0)"

Proof. 1) and 2) are obvious as direct consequences of the definitions of a
sum of functions and a product of a function by a real number.

3) We can write:

f(xo+ h)g(wo +h) — f(x0)g(20)
h

WCCRTET

If we consider the limit when h tends toward 0, we obtain the previous
result.

4) The derivative of a quotient can be computed as the one of a product
by denoting ¢ = é. We then have:

f' (o)
g(l'o)

f(w0)p(xo) + f(w0)d (w0) = + f(w0)d' (o)

We then just need to demonstrate that ¢'(zo) = — %42 We have:

g%(zo) "
1 1
ng’(x ) = glzo+h)  g(zo) _ 1 9(xo) — g(zo + h)
‘ h g(zo + h)g(xo) h
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It follows that: ) )

iy 2@ g() _ g (x0)
h—0 h g2<x0)

5) We use the following relation:

a®— b = (a—b)(a" ' +a" ..+ b

= (a—0b)y adptF

[asry

e
Il
o

Applying this relation using a = f(zo + h) and b = f(z), we obtain:

[y

f(xO + h); - f('ro)n _ f([)?o + hf)L - f(x()) f(ﬂfo + h)kf@jo)nflfk

el
Il

We also know that:
n—1
. k n—1-k __ n—1
}1112% ];_0 f(zo+h)" f(xo) = nf(zo)

It follows that:

lim f(@o+h)" — f(zo)"
h—0 h

= f'(zo)nf (xo)" "

The following corollary is a special case of part (5) of proposition 89. It
allows, combined with parts (1) and (2), to calculate the derivative of any

polynomial

p(x) = Z ayz" (2.9)

Corollary 90 The derivative of f(x) = a™ forn > 1 is f'(z) = na" L.

Download free eBooks at bookboon.com



Analysis and Linear Algebra for Finance: Part | Functions of one variable

We then get
p(z) = Z kayx" (2.10)
k=1

The last part of proposition 89 is also a particular case of the following

proposition related to the derivation of compound functions.

ericsson.
com

YOUR CHANCE
TO CHANGE
THe WORLD

Here at Ericsson we have a deep rooted belief that
the innovations we make on a daily basis can have a
profound effect on making the world a better place
for people, business and society. Join us.

In Germany we are especially looking for graduates
as Integration Engineers for

¢ Radio Access and IP Networks

e IMS and IPTV

We are looking forward to getting your application!
To apply and for all current job openings please visit
our web page: www.ericsson.com/careers

ERICSSON

66

Click on the ad to read more
Download free eBooks at bookboon.com



2.3.3 Derivative of compound functions

Compound functions appear naturally in financial models. For example,
in option valuation models, some elements are probabilities linked to nor-
mal distributions. The formulation of these probabilities is quite complex
and, when dealing with management problems, one has to find derivatives
of option prices with respect to basic variables like maturity, volatility or
the underlying stock price. It is then necessary to calculate derivatives of

compound functions.

Proposition 91 Let f and g be two functions differentiable respectively at

x andy = f(x). The derivative of the compound function go f at xq is given
by:
(go f), (20) = ['(z0)g" [f (w0)]

Consider for example h(z) = f(x)", we can write:

where g(y) = y". Applying proposition 91 leads to ¢'(f(zo)) = nf(xe)"'; it

is the result obtained before. In general we have:

[f(@)") =nf'(z)f(2)" (2.11)

Similarly, if f is strictly monotonic, it is bijective. As such f has an
inverse function, noted f~!, such that f~'o f = ip where ip is the identity

mapping defined on the domain D. Applying the previous proposition gives:

[ 0 f] (o) = f'(wo) (f ) [f(0)] = ip(a) = 1

Therefore, we can deduce the following corollary.
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Corollary 92 Let f be a function differentiable at xq, strictly monotonic
and such that f'(x¢) # 0. Its inverse f~1 has a derivative defined by:

U= ) = 3

with yo = f(xo).

Remember proposition 82 saying that f and f~! vary in the same direc-
tion and that the graph of f~! is symmetric to the one of f with respect to
the first bisector. Indeed, the product of the slopes of two symmetric lines

(with respect to the first bisector) is equal to 1.

Example 93 Let f(z) = 2 be defined on [0;+oo[; its inverse function is

f"Hy) = /y defined on Ry. Applying the previous proposition leads to:

because f'(x) = 2.

2.3.4 Higher-order derivatives

Financial models deal with higher-order derivatives, especially second-order
derivatives, in several fields. In bond portfolio management, what is called
the "convexity" of a bond is measured by a second-order derivative. In
the world of options, the so-called gamma coefficient is nothing else than
a second-order derivative. Finally, in microeconomics, these second-order

derivatives are used to define risk aversion coeflicients.

Definition 94 Let [ be a function from D to R, differentiable in the neigh-
borhood of o € D°. The second-order derivative of f at xy, denoted

1" (x0) is the limit, if it exists, given by:

() = i L0 = T0)
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where f' is the derivative of f.

The properties of the first order derivative apply for higher order deriva-
tives. In fact, the above definition shows that the second-order derivative is

nothing else than the derivative of the first-order derivative.

Definition 95 Let f be a function defined on D with value in R, differen-
tiable n times in the neighborhood of vo € D°. We call derivative of order

n+1 of f at zy and we note f™V () the limit, if it exists, given by:

£ () = Tim S (@) = f (20)

T—To T — To

Example 96 The calculations in the two examples (a) and (b) below are a
direct consequence of corollary 90
a) f(x) =423 — 22% + 1

fl(z) = 122° —4x
() = 24z —4
fO(@) = 24

20(20 —1) —2(2*+1) 22°—20-2 _2*—x—1

fla) = (20 — 1)2 T Q12 T (2r-1)p
" (2 —1) 2z —1)? = 2(22 — 1) (222 — 22 — 2)
_ 2(2:15—1)2—4(332—33—1)
2z -1y
10
- (2r—1)3

The sign of the second-order derivative helps to determine if the function

is convex or concave.
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Proposition 97 Let f be a twice differentiable function on D°. f is concave
(convez) iff f"(x) < (>)0 for all x in D°.

A function is said strictly concave (convex) if f” is strictly negative (pos-

itive).

2.4 Logarithms and exponential functions

As mentioned in the introduction of the chapter, logarithms and exponen-
tial functions are among the most important functions in finance and eco-
nomics. There are many economic and mathematical reasons for that. As we
will see in this section, these functions are infinitely differentiable, they are
convex (exponential functions) or concave (logarithms) and are well suited
to describe economic phenomena. Logarithms are widely used to represent
preferences of economic agents (utility functions) but also to calculate stock
returns, especially when markets work in continuous-time. Exponential func-
tions are also used as utility functions (more precisely negative exponentials)
but come naturally when capitalizing money over time at a continuous rate

of interest.

2.4.1 Exponential functions

Definition 98 For a given positive number a, the function v — f(x) = a”

defined on R is called the a-exponential function.

When z is an integer a” is simply the product a X a X a.... (z times).
When z is a rational number, that is x = p/q where p and ¢ are positive
integers, a® = /a X a X a.... where the product is repeated p times. If z is a
negative integer, a® is 1/(a X a X a....) where the denominator is the z times

product of a.
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Example 99 Assume that, in the above definition, x measures a duration
and a is the appreciation rate of your wealth in a given year (a = 1+r where
T is the interest rate). The quantity a® is the amount you possess after x

years, when your initial investment is $1 at date 0.

Proposition 100 For any positive number a, a-exponential functions sat-

isfy:
1. Y(z,y) € R?, a®a¥ =a""
2. V(x,y) e R?, & =q"¥
3. ¥(z,y) € R?, (a®)! = a™
4 lim, . a® =0
5. lim, ., a®” = +00
6. a® =1

7. The function x — a” s strictly increasing and strictly convew.

2.4.2 e-exponential functions

Suppose you invest $1 with an interest rate of 100 %. What does this sentence
mean exactly? It means that you will receive $2 in one year if the compound-
ing frequency of interests is one year. If interests are compounded monthly,
you are going to receive $(1 + %)12, and if the compounding frequency is

) 365

daily, the amount received is $(1 + % . When interests are compounded

on a continuous basis, the final amount is defined as:

n—-+o0o

1 n
e= lim (1 + —) (2.12)
n

e is approximately equal to 2.71828.

Download free eBooks at bookboon.com



Analysis and Linear Algebra for Finance: Part | Functions of one variable

Definition 101 The e-exponential is the function f defined by:

flx) =e’

where e = lim,, o (1+2)" .

For the above issue of capitalization, e® is the amount received after one

year when $1 is invested at a continuous-rate z. This amount is equal to:

lim (1 n f)n
n

n—-+00

But stating n = max, allows us to write:

n 1 mx 1 mT
lim (1 + E) = lim <1 + —> = { lim <1 + —) } =7
n—-+00 n m—+00 m m—-+oo m

Remark 102 When "exponential function” is used without other specifica-

tions, it means e-exponential function.
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Proposition 103 The function x — e* is strictly increasing and strictly

conver; moreover, (e*)' = e®.
To give the intuition of the result, denote f,(z) = (1+ £)". The deriva-
tive of f,, is given by:
fulz) = n
n 1 n
- (14) _
( + X1z fn(2)

n n—+x

When n tends to +oo, the ratio ;2= tends to 1. It follows that the
derivative of f! (z) is close to e” when n is sufficiently large. As e” is increasing
in x, the derivative (which is still ”) is also increasing and e” is convex by
proposition 97.

Figure 2.7 shows the graph of ¢* for = varying between -1 to 3.

200

Lo

-0.5

Figure 2.7: Exponential function f(z) =e

2.4.3 Logarithms

In the previous section, we saw that a-exponential functions are strictly in-

creasing on R and take values in R? ; a” is then a bijection from R to R?.
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It has an inverse function called a-logarithm.

Definition 104 The a-logarithm, denoted log,(.) is the function defined
by:
y € RY — 2z =1log,(y) so that a® =y

It follows that log,(a*) = z ; the property 100 (of the exponential func-

tions) induces the following one for a-logarithms.
Proposition 105 The a-logarithm has the following properties:
1. ¥(z,y) € RY, log,(zy) = log,(x) + log,(y)
2. ¥(z,y) € Ry, log,(}) =log,(x) — log,(y)
3. ¥(z,y) € R, log,(z¥) = ylog,(z)
4. lim, o+ log,(z) = —o0
5. lim, 4o log,(x) = +00
6. log,(1) =0
7. The function x — log,(x) is strictly increasing and strictly concave.

When a = e, we simply note In(z) for log,(x). This logarithm is called
Neper logarithm (referring to the mathematician John Napier)....or simply
natural logarithm. We also get for logarithms a proposition similar to propo-

sition 97

Proposition 106 The function x — f(x) = In(x), defined on R is strictly

increasing, strictly concave, and its derivative is given by f'(x) = %

Remember that the derivative of e” is e* and that In(z) is the inverse

function of e”. Applying corollary 92 gives immediately the derivative of
In(x).

Figure 2.8 shows the graph of In(z) for x varying between 0.1 to 4.
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Figure 2.8: Logarithm function f(z) = In(z)

2.5 Polynomial approximations and Taylor for-

mula

Logarithms and exponential functions presented in the preceding section are
"complex" functions, in the sense that they cannot be written as polynomi-
als. Of course, most mathematical functions, even those that are infinitely
differentiable, are not polynomials. However, all regular functions are close
to polynomials. They can be approximated by polynomials; the accuracy
of the approximation depends on the degree of the polynomial and on the
choice of coefficients. This is the essential role of the Taylor expansion (or

Taylotr formula) presented hereafter.

2.5.1 Rolle’s theorem

Proposition 107 Rolle’s theorem
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Let f be a function defined on an interval [a;b], taking values in R so that

f(a) = f(b), and whose derivative f' is continuous. It then exists ¢ € ]a;b]
satisfying f'(c) = 0.

This important proposition is very intuitive. If f(a) = f(b), two situa-
tions are possible. Either f(z) = f(a) for any x € [a;b] and f/'(z) = 0 since
the function is constant. Or there exists « € |a;b[ such that f(z) # f(a).
Assume without loss of generality that f(z) > f(a). It means that the deriv-
ative of f is strictly positive somewhere between a and x. But to reach b
with f(b) = f(a) < f(x), f must decrease somewhere between = and b...and
the derivative is negative at at least one point. But the derivative being
continuous, it must be equal to 0 at one point in the interval |a;b[ by the

intermediate value theorem (proposition 81).

The geometric interpretation of this proposition is the following. Consider
the line joining (a, f(a)) and (b, f(b)). By the assumption of Rolle’s theorem,

this line is horizontal with a zero slope, equal to f'(c).

Example 108 Let f be defined by:
f(z) =23z +2

f(z) =0 for x =1 and x = 2. The derivative of f is equal to f'(x) = 2x — 3,
therefore it is equal to 0 at x = %, point located in the interval [1;2] at the

ends of which the function f is equal to 0.

Figure 2.9 shows the graph of f(x) with the null derivative at x = 3/2.
As f(1) = f(2) = 0, the horizontal line joining these points is parallel to the
tangent (y = —0.25) at © = 3/2.
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Figure 2.9: f(z) =2? — 3z + 2

2.5.2 Linear approximation

Proposition 109 Let f be a differentiable function defined on an interval

[a; b] , taking values in R. There ezists ¢ € [a;b] such that:
f(b) = fla) = (b—a) f(c)

Indeed, let us consider the function g defined by:

This function satisfies g(a) = ¢g(b) = 0. Rolle’s theorem implies that there
exists ¢ so that ¢'(c) = 0, that is:

fb) = f(a)

7(0) = (o) - F5— =0
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which proves the result of proposition 109.

Denoting b = a + h and assuming h small leads to:

fla+h) = f(a) +hf'(c)

with ¢ € [a;a + h].
This equality means that we can approximate f(a + h) by f(a) + hf'(a)
when h is sufficiently small. In the neighborhood of a, f can be approximated

by a linear function.

2.5.3 Taylor’s formula

The straight generalization of the above linear approximation is the so-called
Taylor formula allowing to approximate a sufficiently regular function by a

n-degree polynomial.

Proposition 110 Taylor’s formula

Let f be a function defined on an interval |a;b], taking values in R, and
having continuous derivatives up to order n + 1. There exists ¢ € la;b[ so
that:

F6) = f@)+6-a) o)+ P )

Taylor formula is often used with a = 0 and b = x where x is a number
close to 0. In that case, we can write ¢ € |a;b| as ax where « is a number
between 0 and 1. This particular case of the Taylor formula is often called

the Mac-Laurin formula.

Proposition 111 Let f be a function defined on an interval I containing

0, taking values in R, and having continuous derivatives up to order n + 1.
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There ezists o € ]0; 1] so that:

.CL'TH—I
(n+1)!

F@) = 10+ 20) + 710 + 200+ T ar) (213

where © € 1.

The last term of the RHS of equation (2.13) can be written as:

n+1 (n)
* ™ (ax) = 2" x —:Uf (o)
(n+1)! (n+1)!
If I’Z;J)r(l‘;‘f”) tends to 0 when x — 0, we can write:

x? "
@) = f0) +2f(0) + 5 f(0) + — f(0) + 2"e(x)
with lim,_¢e(x) = 0.

Definition 112 A function f has a Taylor expansion of order n in the

netghborhood of 0 if there exist real numbers ay, ..., a, and a function € such
that:

f(z) =ap+ a1z + ...anz™ + x"e(x)

where the function € satisfies lim,_oe(z) = 0.

Definition 113 A function g defined on an open set D C R has a Taylor
expansion of order n in the neighborhood of xo € D if there exist by, ..., b,

and a function € such that:
g(@) =bo+ b1 (x —x0) + ... + by (@ —20)" + (2 — 20)" e(2)

where the function ¢ satisfies lim,_,, (z) = 0.

The remainder of the Taylor expansion, that is the term (z — x¢)" e(x) is

often written o ((z — x¢)") because lim, ., (z) = 0.
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Proposition 114 If a function g has a Taylor expansion of order n in the

neighborhood of vy € D, it is unique.
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Chapter 3
Integrals

Integrals of functions may be approacheded from at least two directions.
First, the analytical approach consists in determining, for a given known
function f, a function F' whose derivative F” is equal to f. We could say that
F is the "anti-derivative" of f.

Second, the geometric approach defines the integral of f between a and
b (if f is defined and positive on a given interval [a; b]) as the area between
the horizontal axis and the curve representing f between a and b.

The last interpretation of the integral is the average value of the function
f over the interval [a;b] . In probability theory, the expectation of a random
variable X is a weighted average of the possible values of X. It is nothing
less than an integral. For example, the expected return of a given stock over

a future period of time can be calculated as an integral.

3.1 Integral of a step function

Everybody knows how to calculate the area of a rectangle: it is enough to
multiply the length by the width to get the result. It is the reason why we
start to present integrals by means of the most simple functions, namely the

step functions. All functions in this section are defined on an interval [a; b]
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and take values in R.

3.1.1 Step functions: definition

Definition 115 A subdivision of an interval I = [a;b] is a set of real num-

bers S, = (xo, ..., x,) such that:
a=29 <21 <..<Tp=0
max;_1, ., |x; — xi_1| is called the step of the subdivision.

Definition 116 A function f is a step function if there exists a subdivision
Sy = {xo,...,z,} such that f is constant on any interval |z,_1;x;[ for 1 =

1,...,p. For any © € |z;_1; x;[, the value of f(x) on |x;_1;x;] is denoted y;.

This definition does not specify the values of f at z;. In most economic
or financial problems, f(z;) = y; or f(x;) = y;_1, depending on the right or
left continuity of f. However, in this chapter these values are not important.
More generally, when dealing with integrals of functions, the value of the
function at a given point does not matter. We will be more precise on that
in the following paragraphs.

Figure 3.1 gives an example of a step function defined by f(x) = Int(z/5)+
1 where Int(y) is the integer part of number y. x/5 is lower than 1 when z < 5
consequently f(x) =1 for x < 5, etc.

When a step function f is positive, it is easy to calculate the area delim-
ited by the horizontal axis and the graph of f. This area is a sum of areas of

rectangles. On figure 3.1 it is easy to calculate the area under the curve as:
DX 1+5x24+5x34+5x4=50 (3.1)

The length of the horizontal axis being 20, it is also easy to see that the
average value of f on the interval [0;20] is computed as 50/20 = 2.5. In fact
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1.5

25

L5

5

Figure 3.1: fi{z) = Int[z/5) + 1

2.5 13 the anthmetie average of the tour valies 1,2 1 4 becanse the lengths of
the intervals over which | is constant are always equal to 5. All the intervals
of the subdivision have the same length [weight] in the calculation of the
weighted average.

The following proposition summarizes saome intuitive properties of step

functions.

Proposition 117 a} If [ and g are twe slep funclions defined on I = [a:b],
4+ 9 w5 e step funcfion on [

b) If f iz a step function defined on I = [6:8] and o is 2 real number af
15 o step funcfion on [

e) If f ¢5 @ step function defined on I = [a:b], the absolute value |f| ts a
siep functlion.

4.1.2  Integral of a step function

Definition 118 Lst f denote a step function defined on |aib) | valued y; on
the interval |z x| the integral of [ on la:b] és denoled J: flade and

83
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defined by:

[ e = Zy (20— i)

The quantity fab f(z)dz does not depend on the fact that intervals in the
subdivision are closed, open or semi-closed(open). Even if f is valued z; # y;
at z;, fab f(x)dz remains unchanged, simply because an interval [z;;z;] has
a null length. In the definition, the function f is valued y; over each interval
|z;_1;x;] ; when the y;s are positive, each element of the sum fab f(x)dx is

the area of a rectangle with length sizes y; and width size (z; — z;_1).

Proposition 119 Let f denote a step function defined on [a;b|. The integral
fab f(x)dx does not depend on the subdivision.

To be clear about what is said in the proposition, remember the definition
of the step function. It is constant over intervals. It means that such a
function already defines a "natural" subdivision of the horizontal axis as on
figure 3.1. The proposition means that as long as the values taken by the step
function are defined, the way [a;b] is sliced does not matter, simply because
the step function is constant on each interval |z;_1;x;[. Assume for example
that you divide this interval in two sub-intervals|z; q; x*[|J [z*; z;[; it does

not change the global area because
Yilwi — %) + yi(@" — zi1) = yi(w — 251) (3.2)

The following proposition summarizes properties of integrals of step func-
tions but most of these properties remain valid for more general functions.

However, the intuition behind these results is clearer for step functions.

Proposition 120 Let f and g denote two step functions defined on I =
[a; 0] .
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a) The integral of the sum f + g is equal to the sum of the integrals of f

and g :

[ urowar= [ s [ g

b) Yo € R, the integral of af is equal to o times the integral of f :

[ @nwr=a [ s

¢) For any c € I, we have:

/abf(x)dx = /acf(x)d:c + /cbf(x)dx

d)If f = g then [, f(z)dx > [} g(x)dw
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3.2 General case

We are now ready to generalize the above definitions to larger families of
functions, for example continuous functions (which remain bounded over

intervals like [a; b] by proposition 83).

3.2.1 Integrable functions on [a;b]

Let f denote a continuous function on [a;b] and a = ¢y < ... < x, = b a

subdivision of [a;b] . Let m; and M; be defined as follows:

m; = inf{f(z),z € [x;_1; 7}
M; = sup{f(z),z € [zi1;zi[}

m;(M;) is the minimum (maximum) value of f on [x;_1; 7]

Denote s, and .S, the following quantities:

p

Sp = Z m; (l’z — xi—l)
=1
p

S, = Z M; (x; — x-1)
=1

s and S are indexed by p which refers to the step of the subdivision equal to

maxle (.QTZ — ﬂfi_l).

Figure 3.2 illustrates the way we can define the integral of a continuous
function by means of s, and S,. The area below the graph of the function
f(z) =/ is bounded by the areas below the graphs of two step functions g

(thin line correponding to S,) and h (bold line corresponding to s,). In fact
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Figure 3.2: Upper and lower bounds of the integral of f(z) = /z

we have:
3
/h(:ﬂ)d:c = 1+V2=s5,
0
3
/g(x)dx = 1+\/§+\/§:Sp
0

We therefore know that 1+ /2 < f03 flx)dr <14+ V2 + 3.

Considering a refinement of the subdivision (increasing the number of
intervals p and decreasing the length of intervals x; — z; 1) leads to the
convergence of s, and S, (which are adjacent sequences) to the same value

when p — +o00. This common value is the integral of f between a = 0 and

= 3 and is denoted f03 f(x)dz.

Definition 121 A function f defined on |a;b] is Riemann-integrable if the
sequences s, and S, are adjacent'. The common limit of these sequences is
called the integral of f over |a;b] and denoted fabf(x)dx

s, and S, are in fact the integrals of two step functions taking respectively

the following values, {m;,7 =1, ...,p} for s, and {M;,i = 1,...,p} for S,.

Isee chapter 1.
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This remark therefore allows to define integrable functions in a more
general way. In fact, looking more closely to the construction method by
means of adjacent sequences reveals that continuity of f is not a necessary
condition to define integrals. The important point is to be able to "insert"

f between two sequences of step functions.

Definition 122 A function f defined on [a;b] is integrable if for any e > 0
there exist two step functions g and G defined on [a;b] such that:

g< f<d@ and/ (G(z) —g(z))de < ¢

Denote &,, (Enr) the set of step functions lower (greater) than f and
define I,,, and I,; by:

b b
I, = sup/ g(x)dx and Ip; = inf / G(z)dz

9E€EmM Gelu

These bounds exist because any step function in &, is bounded above by
a function in &,; and any element of &£, is bounded below by an element
of &,,. Definition 122 then have the following meaning: f integrable <=
I, = 1.

Definition 123 The integral of an integrable function f over [a;b] is equal
to Im = ]M

This definition is very useful in numerical methods. It allows to approxi-

mate the value of the integral when the formulation of f is too complicated.

3.2.2 Properties of integrals

Proposition 124 Any continuous function on [a;b] is Riemann-integrable.
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Proposition 124 is intuitive if one thinks to positive functions®. In fact,
a continuous function on a closed interval [a;b] is bounded. The integral
fj f(z)dz is then bounded above by M (b—a) if M denotes the maximum of
f over [a;b]. Tt is of course bounded below by 0 if f is positive.

The following proposition is the extension of proposition 120 to continuous

functions (not necessary step functions).

Proposition 125 Let f and g denote two continuous functions defined on
I=a;b].

a) For any pair (a, ) of real numbers:

/ab (af + Bg) (x)dx = Oz/abf(x)dg: + 5/abg(:r)dx

b) For any c € I, we have:

/abf(x)dx = /acf(x)dx + /Cb f(z)dz

c) If f > g then fab f(z)dx > f: g(x)dx

In part II of the book, devoted to linear algebra, we will see that part
(a) of the above proposition means that the set of integrable functions is a
vector space.

The intermediate value theorem is a good illustration of the way integrals

are built.

Proposition 126 1) Let f denote a continuous function defined on [a;b]
and m, M satisfying m < f(x) < M for any x. There ezists C € [m; M|
such that:

Clb—a) = / o)

2When functions are not everywhere positive, they can always be written as a difference
of two positive functions.
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2) If g is integrable, bounded, and keeps the same sign over |a;b|, there
exists B € [m; M| such that:

/ fz)g(z)dx = /ab g(x)dx

Proof. 1) Applying (c) of proposition 125 leads to:
b b b
m§f§M:>/ mdxg/ f(x)dxg/ Mdz
We then write:
b
m(b—a) < / F@)dz < M(b—a)
We can therefore find C' € [m; M| satisfying:
b
C(b—a) :/ f(z)dz
2) Applying once again (c) of proposition 125 leads to:

b b b
mg < fg < Mg= / m(z)d < / f(2)g(x)dz < / Mo(x)dz

From this inequality we deduce immediately:

b
/ dm</f d:vﬁ]\/[/gxdx

It follows that there exists B located between m and M and satisfying:

/f z)dzx = B /abg(a:)dx
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The interpretation of proposition 126 is easy (if one remembers the step
function of figure 3.1). In this simple example, we had ¢ = 0,b = 20 and
f; f(z)dz = 50. Consequently, B = 2.5; it is exactly the average value of
f over the interval [0;20]. In this case, the function f can be viewed as a

system of weights to calculate the weighted average value of g.

Corollary 127 If f is continuous on [a;b], there exists ¢ € [a;b] so that:

(b—a)f(c) = / f(2)da

As the constant C' in the proof of part (1) of proposition 126 is in [m; M]
and because f is continuous, there exists ¢ such that C' = f(c). The result of

the corollary immediately follows from part (1) of proposition 126.

Proposition 128 Let f be an integrable function on [a;b] so that |f | is
integrable. We have the following inequality:

/a ' Ha)ds

This inequality is still valid if @ and b are replaced by ¢ and d, two numbers

< [ ras

in the interval [a; ] . It is easy to prove this proposition by applying part (c)
of proposition 125 and by noting that |f| > f and |f| > —f. We can then

write:
b b b b
[ 1@l z ([ soytei- [ i) = | [ s
Let f and g be two functions defined on [a;b] so that f? and g* are inte-

Proposition 129 Schwarz inequality

grable. We then have:

Uabkz‘(lt)g(t)dt]2 < /abe(t)dt/abQQ(t)dt
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Proof. We provide the proof of this proposition because the "trick" used in
it is useful in a number of circumstances.

For any real number )\, we can write:

b b b b
/(f(t)+)\g(t))2dt:)\2/ gz(t)dt—{—Q)\/ f(t)g(t)dt+/ fA(t)dt

This equality comes from the elementary properties of integrals. As a func-
tion of A, the expression on the right-hand side is a second-degree polynomial
which is always positive due to the formulation of the left-hand side. Con-

sequently, the reduced discriminant A’ is negative. But this discriminant is

x=[f bf(t)g(t)dtr - [ [ o <o

It proves the Schwarz inequality. A by-product of this result is the following;:

equal to:

when two functions are square-integrable, the product of the two functions

is integrable. This property is also very useful in probability theory®. m

3Roger. P (2010a), Probability for Finance, chapter 3.

[ ]
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3.2.3 Primitive integrals

Definition 130 Let f and F be two functions defined on [a;b] and taking
values in R: F' is a primitive integral of f if F' is differentiable at any point
in la; b and F'(z) = f(x) for x € ]a;b].

Proposition 131 If f is continuous on I = [a;b], the function x — F(z) =
fax f(t)dt is a primitive integral of f . The function F' is thus differentiable
and satisfies F' = f.

If F' is a primitive integral of f, we have:

Ve,y) €I x I, /y Ft)dt = F(y) — F(x)

In proposition 131, the essential relationship between F' and f is F’' = f.
It turns out that a usual notation for F is [ f(z)dx without specifying the
bounds of the integral. In the remainder of the book, [ f(x)dz is a function

satisfying ([ f(x)dx)/ =f

Proposition 132 Let f be an integrable function defined on I = [a;b]. If
F and G are two primitive integrals of f there exists a constant ¢ so that
F(z) — G(x) = ¢ for all x in ]a;b].

This result can be easily illustrated. Consider F(z) = 22 and G(z) =
2%+ 5; the derivatives of the two functions are F'(x) = G'(z) = 2z. It means
that F' and G can be primitive integrals for f(z) = 2z because they differ

only by a constant (and the derivative of a constant is 0).

3.2.4 Primitive integrals of usual functions

Proposition 133 Let f be a polynomial defined on R by:

)= 3t
k=0
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We then have:

n

/f(a:)da: = Z k;(ﬁ 19:’““
=0

okl
k+1

k

is 2" in order to prove

We just need to note that the derivative of

this proposition.

Proposition 134 1) The natural logarithm, denoted In(), is defined on R
and satisfies In(1) = 0. It is the primitive integral of f(x) = % We then

have, for all x € [1;+o00]:
1
In(z) = / —dt
1t
2) The exponential is its own primitive integral. In other words, we have:

/Ox exp(t)dt = exp(z) — exp(0) = exp(z) — 1

As mentioned before, we can also use the notation based on integrals

without bounds to specify these results:

In(z) = / éd:p and exp(z) = / exp(t)dt

3.3 Computations

3.3.1 Integration by parts

Remember (or go back to chapter 2) that the derivative of the product of

two functions is defined as follows:

[(t)g(t)]" = h'(t)g(t) + h(t)g'(t) (3-3)

When solving integration problems, it is often useful to decompose the
function to be integrated in a product like ¢'(¢)f(¢) and to use integration

by parts.
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Integrating both sides of equation (3.3) leads to:

/ o) dt = / " (O (1)t + / "SRt (3.4)

We finally obtain:

[ doma = gonr; - [ gowa 35)
where [g(t)h(t)]; = [ [9(t)h(t)]' dt is equal to the difference g(z)h(z) —
g(a)h(a).

Example 135 Let f denote the Neper logarithm f(t) = In(t) and F' a prim-
itive integral of f  such that:

Fz) - F(e) = / “In(t)dt

where x and € are strictly positive numbers. It is not obvious to guess what
is the function whose derivative is In(x). But we know that the derivative of
In(z) is % Integration by parts will be the right technique to find the primitive
integral of In(z). Let us define:

h(z) = In(x)
g) =1

so that [Z1In(t)dt = [* h(t)g'(t)dt. Applying formula 3.5 and using W' (t) =
and g(t) =t leads to:

[ wae = [ gom = lgonel: - [ gona
_ [tln(t)]f—/j% Xt

= zln(z) —z — (eln(e) — ¢)
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We know that lim._geln(e) = 0 but In() is only defined on the set of strictly
positive numbers. It is then necessary to define a new function t — ¢(t) =
t1n(t) with the assumption ¢(0) = 0. Doing so allows to obtain the final

result:

F(z) = /Ox In(t)dt = zIn(z) — x

3.3.2 Change of variable

In definition 118, assume that z; can be written g(y;) where g is a strictly
increasing and differentiable function defined on an interval [c;d], taking
values in [a;b] and satisfying g(¢) = a and g(d) = b. We could therefore

write:

Zf(atm)(xi—xil Zf (9(y:) — 9(yi-1))

When p tends to infinity, we can use the approximation:

9Wi) — 9Wi-1) = 9'(Wi1) (Wi — yi1) (3.6)

In other words:

b p
[ #a)dz = tm fozl O N WA () Y (T [y

p—+o0

The right-hand side can also be written as the following integral:

/ flaw)lg'(y)dy (3.7)

In solving problems, the route is generally taken the other way. When
you do not know how to calculate an integral, you are going to look for a
formulation like expression 3.7. You will then be able to write it as ff f(z)dx

that is an integral you can compute.
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One of the essential points in the change of variable technique is that the
interval [c;d] must be transformed in the interval [a;b]. It assumes implic-
itly that g is bijective, with ¢ = g7 (a) and d = ¢g~'(b). In most practical
problems g is either strictly increasing or strictly decreasing, and of course
differentiable.

Finally, when using ¢g(y) = z, we need to replace f(x) by f [g(y)] but also

dz by ¢'(y)dy.

Example 136 In financial models, returns are often assumed to be driven
by a gaussian distribution. The density of this probability distribution (when
standardized) is f(x) = \/Lz? exp(—12/2). The following integral is the average

value of such a variable when it falls between 0 and 1.

1 1
[ = — xexp(—z2/2)dx
= [ ves(=atr2)

Let y = g(x) = —2?%/2. Noticing that ¢'(x) = —x, we can write:

1 1
_\/27'(' 0 g

It appears that ¢'(x)exp(g(z)) is the derivative of the compound function
exp(g(x)). It follows:

1= () exp(g(x))da

\/%/0 vexp(—2?/2)dx = —\/12—7T[6XP(9<35))](1)
1 -1/2

= _m[eXp(yﬂo

g(x) has been replaced by y in this expression. The values of y are used to
specify the bounds of the integral. When x = 0 we have y = 0 and when
r=1y= —%. Finally we get:

\/% /O1 v exp(—a?/2)dz — \/% (1 - exp(—%))
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The two computation methods, integration by parts and change of vari-
able, are very useful to solve practical problems but there does not exist a
sure way to know which of the two will be efficient. Training is the best way

to improve your skills in integral computation.

3.4 Improper integrals

Up to now, we computed integrals of bounded functions on a closed interval
[a; b] with —oco < a < b < +00. We excluded two situations:

1) One of the boundaries (or both of them) of this interval is infinite.

2) The function f is defined on the semi-open interval [a; b[ (or ]a; b]) and
lim, ;- f(x) = oo (or lim, .+ f(x) = +o0).

Taking into account these two situations is possible under some conditions

and the corresponding integrals are called improper integrals.

3.4.1 Unbounded domains

Definition 137 1) Let f be a function defined on [a;+o00|. The improper
integral of f is the quantity denoted f(joo f(z)dz and defined by:

7 = hm/f

a b——400

2) Let g be a function deﬁned on the |—oo; b] . The improper integral of g
15 the quantity denoted f x)dx and defined by:

/ g(x)dx = lim f(z)dz

a——00
—00 a

3) Let h be a function defined on R. The improper integral of h is the
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quantity denoted fjoc: h(z)dx and defined by:

/ " e = / " h@)de + / " hayda

o0 — 00

where a 1s any real number.

Let us first assume that f is positive: if we know a primitive integral F
of f, then the integral f:oo f(z)dz is convergent if lim, ., F'(z) is finite.
When we do not know any primitive integral of f, we need to find a function
g, which we know a primitive integral of, that represents an upper bound of

the function f. If g is integrable, then f will also be integrable.

Proposition 138 Let f and g be two positive functions defined on [a; +o0[
and satisfying f < g. If the integral of g is convergent then the integral of f

18 also convergent:
“+o00

wis < | 7 ga)ia

Similarly, if the integral of f is divergent then the integral of g is also

a

divergent.

3.4.2 Unbounded functions

The second situation to be dealt with is the case of unbounded functions.
For example, the function f(z) = 1/x tends to infinity when z tends to 0.
The question is to know whether these functions can delimit a finite area and

consequently be integrable.

Definition 139 1) Let f be a function defined on the semi-open interval

[a; ¢[ and satisfying:

lim f(z) = +oo (or —o0)

r—cC
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The improper integral of f on [a; | is the limit defined by:

/C fz)dz = blimi bf(a:)da:

2) Let g be a function defined on the semi-open interval |c; b] and satisfy-
mg:

lim g(x) = 400 (or —o0)

T—ct

The improper integral of g on |c;b] is the limit defined by:

a—»c

/f )z = lim abf()

If the limits exist, f is said integrable on [a;c| and ¢ integrable on |¢; b] .

af 0 g ¥ .l’l i T !I i 8 g ".__ ,':'l:l_'.-:'-"lnl-fl;'llr' T

-

The financial industry needs a strong software platform
That’s why we need you

Find your next challenge at
www.simcorp.com/careers

- www.simcorp.com
S I mCO rp MITIGATE RISK ‘ REDUCE COST ‘ ENABLE GROWTH

100
Click on the ad to read more
Download free eBooks at bookboon.com



Chapter 4
Matrices

This chapter is devoted to the presentation of matrices, their definition and
their essential properties. Matrices are essential to develop later on the no-
tions of linear mappings and vector spaces. Moreover, matrices arise natu-
rally when solving multidimensional optimization problems. Nowadays, the
calculation rules presented in this chapter are almost never used in a "pa-
per and pencil" approach but in general by means of computer programs or
spreadsheets. Especially in finance, people deal with large data sets shaped as
matrices, with a given number of rows and columns. The typical dataset is a
table of prices or returns. Each line corresponds to one day and each column
to one stock. Therefore, matrix calculations are done in spreadsheets and
it is essential to know how to manage these calculations. This is the reason
why it is necessary to understand, at the theoretical level, how to "combine"
matrices through addition, multiplication, inversion, transposition, and so

on.

4.1 Definitions

Definition 140 Let n and p two positive integers. A matriz A of dimen-

sions (n,p), is a table of real numbers with n lines and p columns written as
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follows:

a1; Q12 ... QA
Q21

A=
| anl ce App |

We also write A = (a; j,i=1,...,n;5 = 1,...,p) or simply (a;;) when there
is no confusion about dimensions. To refer to dimensions, A is called a (n, p)

matri.

As mentioned in the introduction, the typical matrix in finance contains
prices or returns. a;; is then for example the closing price of stock j at date

¢ or the return on stock j over day <.

Definition 141 1) Let A be a (n,p) matriz. A is called square matriz
when n = p.

2) The coefficients a;;,i = 1,...,n, are called the diagonal elements of A.
A matriz A is diagonal if all the non-diagonal terms are null, that is if
a;j =0 fori# j.

3) A is a lower triangular matriz if all the terms located above the
diagonal are equal to zero, that is if a;; = 0 fori < j.

4) A is an upper triangular matriz if all the terms located below the
diagonal are null, that is if a;; =0 fori < j

5) A matriz A is a null matriz if all elements a;; are equal to 0.

If Ais a (n,p) matrix, we note A(; the matrix containing only the i-th
line of A ; similarly AY) is the matrix corresponding to the j-th column of
A. Agy is then a (1,p) matrix and AY) is a (n, 1) matrix. In the example of
stock prices, A(; would be the set of closing prices on day 7 and AU would

be the time-series of stock-j prices.

Download free eBooks at bookboon.com



Triangular matrices appear in financial models when dealing with payoffs
of bonds. Assume you hold coupon bearing bonds denoted A, A, A3
with maturities 1, 2 and 3 years. In a three-year horizon model, Ay =
(a11,0,0), Ay = (as1,a22,0) and Ay = (asi, ase, azs) where aj; is the re-
imbursement price of bond j including the last coupon. a;; is the coupon
paid by bond 7 at date j. Of course, a;; = 0 when ¢ < j since a bond does
not pay anything after the maturity date. It turns out that the matrix A is

triangular.

Example 142 Suppose that you want to build the term structure of interest
rates with an horizon of T' = 3 years. This means that you want to determine
the date-0 value of a dollar paid at date 1, at date 2, at date 3, etc. Assume
that three bonds are traded with three different maturities (from one to three
years) and a common face value equal to $100. The matriz A below summa-

rizes the future payoffs of the three bonds. The coupon rates are respectively

5%, 4% and 6%.

105 0 0
A=1| 4 104 0 (4.1)
6 6 106

Assume that the date-0 prices are respectively 100, 99 and 101.9. We
observe that we could represent the problem by a function from R3® to R,

where

£(105,0,0) = 100 (4.2)
£(4,104,0) = 99 (4.3)
£(6,6,106) = 101.9 (4.4)

The following sections of this chapter will allow us to solve this problem
and part II of the book illustrates the properties of f which is a linear mapping

when there are no arbitrage opportunities on the bond market.
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4.2 Elementary algebra on matrices

4.2.1 Transposition

Note M, , the set of (n,p) matrices.

Definition 143 Let A € M,,,. The transposed matriz of A (or simply
the transpose of A) denoted A’ (or AT) is the matriz obtained by switching

lines and columns of A.

As A € M,,,, we have AT € M, ,.

Example 144 Let A be defined by:

S

I
N
CIUURIN

The transpose of A is given by:

AT:A/:

2 6 1
4 3 2
A has three rows and two columns. As mentioned above, the transpose A’

has two rows and three columns.
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4.2.2 Sum of matrices

Definition 145 Let A = (a;;) and B = (b;;) be two matrices of M,,,,. The
matriz A+ B, sum of A and B, is defined by A+ B = (a;; + b;;), that is:

11 Q12 ... QA1p b11 b12 blp
asq b21
A+B = | . +
| Qn1 cee Qpp | | bnl bnp i
[+ by ap b . aip + by |
a1 + by
L an1+bn1 anp—l—bm, i

Example 146 Let A and B be defined by:

2 4 -1 6
A=16 3 B=| 2 1
1 2 -3 0
A+ B is given by:
2—1 446 1 10
A+B=1]6+2 341 |=| 8 4
1-3 240 -2 2

This example and the definitions also illustrate that two matrices can be

added only if their dimensions coincide.

Proposition 147 Let A, B and C' denote three matrices of M, ,, and denote

On.p, the (n,p)-matriz containing only zeros. We then have:
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1)A+B=B+A
2) A4+ 0, =A
¢)A+(B+C)=(A+B)+C

4.2.3 Multiplication of a matrix by a real number

Definition 148 Let A = (a;;) and 5 € R. We note SA the matriz obtained
by multiplying each term of A by the real number [3, that is:

-5011 Bag ... 5(11;;-
Bam

BA =
| Bant ... . Bagy |

Remark 149 If § = —1, we get the matriz A = —A. Consequently, sub-
tracting a matriz B from a matrix A is equivalent to add B to the matrixz A

multiplied by —1.
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Proposition 150 Let A and B be two matrices of M., and (e, B) a couple
of real numbers. We have:

1) (a+p)A=aA+ (A

2)a(A+ B)=aA+aB

3) & (BA) = (af) A

1) 0.A=0,,

4.2.4 Product of matrices

We first start by simple matrices with either one row or one column.

Definition 151 Let A € M, ,, and B € M, 1. We call product of A and B,
and we note AB, the matriz of M, defined by:

AB = a1b11 + ai2bay + ... + a1,bn1

Example 152 Let A = [ 1 31 ] and BT = [ 31 2 ] . The product
AB writes:

3
AB:[1 31} 1| =3x1+1x34+2x1=8
9

We multiplied a matriz A(1,3) by a matriz B(3,1) to obtain a matriz (1,1)

which is simply a real number.

In the chapter devoted to vector spaces in part II, matrices with one line
or one column will be called "vectors". In this framework, the above product

is called the inner product of A and B.

Definition 153 Let A = (a;;) € M,,, and B = (bi1) € M, 1. The product
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of A and B, denoted AB, is the matriz in M,, ; defined by:

a1; Q12 ... QA
b a11b11 + ar2bar + ... + aipbpr
21 11
a21611 + (Zggbgl + ...+ a9 b 1
AB = ) | = pep
b
'pl
An1bi1 + apabor + ...+ anpbp
| dnl ce App |

AB has n lines (number of lines of A) and one column (number of columns
of B). The i-th line of AB is the product of the matrix-line A (the i-th line

of A) by the matrix B.

Example 154 Let A and B be two matrices defined by:

3y

4x1+1x2
[4]

1 2
A= |0 2| and B =
4 1

The product AB writes:

4x44+1x1

= 4x0+1x2 | =

6
2
17

Typically, suppose that columns of A represent future payoffs of financial

securities in different (3) states of nature and B contains the quantities of

these securities held by a given investor. In this simple framework, the prod-

uct AB provides the possible payoffs of the investor’s portfolio in the different

states of nature.

Definition 155 Let A € M,,,, and B € M, ,,,. The product AB, denoted C,
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is a (n,m) matriz the generic term of which being written:
p
Cij = aﬁblj —+ Ojingj + ...+ a/ipbpj = Z aikbkj
k=1

The product AB of two matrices A and B is possible only if the number

of columns of A is equal to the number of lines of B.

Transpose of a product of matrices

Proposition 156 Let A and B two matrices so that the product AB is pos-
sible. We have:
(AB)' = BT A"

This proposition also illustrates the fact that, even if A and B are square
matrices, the product is not commutative, that is there is no reason to have
AB = BA.

Example 157 Consider the two matrices of the preceding example

|

1 2
A=10 2 and B =
4 1

The product BT AT is given by:

2 21
= [dx14+1x2;4x04+1x2;4x4+1x1]

- [6 2 17}:(AB)T

BTAT — [4 1}[1 04

4.2.5 Square matrices and inverse matrices

To simplify, we denote M,, (instead of M,, ,,) the set of square (n, n) matrices.
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Definition 158 1) The identity matriz in M, is the (n,n) matriz whose
only non-zero elements are the diagonal elements equal to 1. This matrix is
noted I,,.

2) A matrix A € M,, is said invertible if there exists a matrix B € M,,
so that AB = BA = I,,. B is then called the inverse matriz of A and noted
AL

Example 159 The so-called Arrow-Debreu securities are financial assets
paying $1 in a given state of nature and 0 in all the other states. It means that
i a world with n states of nature, the payoffs of an Arrow-Debreu security
write as a column of I,,.

Suppose that the columns of A in the above definition are the payoffs of
securities traded on the financial market. The inverse matriz A~' defines the
quantities of securities that should be bought to duplicate the Arrow-Debreu

securities. For example let A be defined as follows:

1 2 3
A=11 2 2 (4.5)
4 1 1
The inverse matriz is
12
0 -7 7
_ 11 1
1 -1 0

Look now at the first column of A~ which is (0;—1;1)". It means that
selling one unit of the second asset and buying one unit of the third generates

the payoff (1;0;0). The reader can easily check it is the case.
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The two other columns of A~! give the portfolios duplicating the two other

Arrow-Debreu securities.

Proposition 160 Let B,C two elements of M, :

a) If A € M,, is invertible, AB = AC = B = C.

b) If D € M,, is invertible, BD = CD = B = C.

c¢) If two matrices H and V of M, are invertible, the product HV is
invertible and (HV) " = V1H 1.

Proof. The proof of this proposition is simple but useful.

a) AB=AC = A'AB = A"'AC = B = C as, by definition of A~! we
have A~'A =1,,.

b) BD = CD = BDD ! =CDD~! = B = C for the same reason as in

(a).
c¢) On the one hand:
HVYVI'H'=H(VV ') H'=HI,LH'=HH ' =1,
and on the other hand:

VIH''HV =V ' (H'H)V =V 'L,V =V'V =1,

These two calculations prove the result, that is (HV) ' =V 'H"!. =
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4.2.6 Elementary matrices

Elementary matrices are elements of M,, that allow to perform some specific
transformations on elements of M,,, for example:

- permute two lines or two columns of a given matrix A ;

- multiply a line or a column of A by a real number c¢ ;

- Add a line (column) of A to a line (column) of A multiplied by a con-
stant.

In the next subsection we use (3, 3) matrices to simplify the presentation

but the rules we describe apply to (n,n) matrices.

Permutation of lines or columns

Let IT;5 be the matrix defined by:

1_112 =

o = O
o O =
_ o O

This matrix is obtained by swapping the two first columns (or the two

first lines) of the identity matrix I3.

010 a1 Gi12 413 G21 (22 (23
I, A = 1 00 asy G asz | = | ain aip a3
0 0 1 as; Ggz as3 as; agz as3
aji; ajp a3 010 a2 ap; a13
All, = 21 Q22 A23 100 = Qg2 Q21 23
az1 a3z 0433 0 01 32 A31 433

I1;5A is deduced from the matrix A by switching lines 1 and 2. All;s is
deduced from A by switching columns 1 and 2.
In the following proposition we note II;; the matrix deduced from the

identity matrix by switching columns 7 and j.
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Proposition 161 The premultiplication by IL;; of a matriz A exchanges

lines i and j of the matrixz A.

The postmultiplication by 11;; of a matriz A exchanges columns i and j
of the matrixz A.

Multiplying a line or a column by a constant

Let us consider the matrix /;(c) defined by:

Li(c) =

S O 0
o = O
= O O

This matrix is deduced from the identity matrix by multiplying the first

diagonal term by a constant c.

c 00 a11 a1z ais caijx Caiz2 Cais
L(c)A = 010 Q21 Q22 (23 = Q21 G2 Q23
001 Ga31 a3z ass a3z1 as2  4ss
a1 Gi12 13 c 00 cai; ai2 aig
AlLi(c) = Q1 G2 Q23 010 = Caz1 Q22 Q23
asy asp as3 0 01 caz a3y (33

The result obtained with I;(c) is generalized with Ij(c), the matrix de-
duced from the identity matrix by multiplying the k-th diagonal term by a

constant c.

Proposition 162 The premultiplication of A by Ii(c) multiplies the k-th line
of A by c. The postmultiplication of A by Ij(c) multiplies the k-th column of
A by c.
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Combining two lines or two columns

Let us consider the matrix I;3(c) defined by:

10 c 100 00 ¢
Ise)=] 010 |=]l010]+|000
001 001 000

As shown in the right-hand side of the above equality, ;3(c) is deduced
from the identity matrix by adding a constant ¢ to the term located on the

first line and the third column.

1 0 ¢ a1 a1z Q13 ai1 + casy  aip + cagy a3 + cass
Lz(c)A = 010 Q21 Q22 (23 = a21 Q22 a23
001 asz; s a3z asy a3z as3
a;x a2 ai3 I 0 ¢ a1l Q12 a3+ cary
AlLs(c) = a1 Qg (93 0 1 0 [=1] an ax as+can
as; asp as3 001 azr asz azz + cas

The result obtained with I13(c) is generalized with /;;(c) in the proposition

below.

Proposition 163 The premultiplication by Iix(c) of a matriz A adds ¢ times
the k-th line to the i-th line of A. The postmultiplication by I;x(c) of a matriz
A adds ¢ times the i-th column to the k-th column of A.

4.2.7 Matrix concatenation

Definition 164 1) Denote A a matriz with n rows and p columns and B a

matriz with n rows and m columns. The concatenate matrix of A and B is
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the (n,p +m)-matriz C' (also denoted [A|B]) defined as follows:

a1 ... Qip bll blm

C=I[A|B] =
QAp1 Anp bnl b’nm

2) Denote A a matriz with n rows and p columns and B a matriz with k
rows and p columns. The concatenate matriz of A and B is the (n+ k,p)-
matriz D (also denoted [4]) defined as follows:

a1y ... Qip

Concatenation is often used in solving systems of linear equations, as
illustrated in the next section. Of course, the notation [%] for matrices has

no relationship with divisions.

4.3 Linear equations

4.3.1 Introductory example

Consider a financial market where p stocks are traded. In the near future (say
tomorrow) there are n possible economic situations. The future price of each
stock depends on the economic situation that occurs tomorrow. Suppose an
investor wants to consume ¢; if the i-th situation occurs. We note m;; the

tomorrow price of stock j in economic state . Which portfolio should the

Download free eBooks at bookboon.com



investor buy today to meet her future consumption needs? In other words,
which quantities of the p assets should be bought to be able to consume ¢;
in state ¢7

Denote 2’ = (z1,z2,...,x,) these quantities where the prime denotes

transposition. If state ¢ occurs, the portfolio value will be:
P
X1 + ToTio + ... + TpTip = Z,Ijﬂ'ij
j=1

According to the requirements of the investor, the following n equations

have to be solved:

T1T11 + TomTi2 + L TpTp = €1
T1To1 + TaToo + ... TpToy = C2

..................... (4.8)
T1Tp1 + ToTp2 + . TpTpp = Cp

Denote M the (n, p)-matrix of future prices:

11 T12 ... Ti1p
T21 e Tp
M =
| Tn1 coo Tnp |

and ¢ the (n,1) matrix of consumptions, ¢; being the i-th element. The set

of equations 4.8 can be summarized in matrix form:
Mx =c

Remember the dimension rule to multiply matrices. Mx = c is consistent

because M has n rows and p columns when x has p rows and one column.
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Consequently Mz has n rows and one column, that is the dimensions of c.
Max = c is a system of linear equations because the power of unknowns
is equal to 1 (the quantities ;).
The main problems to be solved are the following:

1) Has a given linear system Mz = ¢ a solution?
2) If there is a solution, is it unique?

3) If there are solutions, how can we compute them?

4.3.2 A typology of linear systems

In this section we consider the general case of a linear system Az = b, where
Ais a (n,m) matrix and b a (n,1) matrix. Can we find a (m, 1) matrix =
solving:

Arx =b (4.9)

Definition 165 The linear system Ax = b is:
- square if A is a square matriz (element of M.,,).
- a Cramer system if it is a square system with A invertible.
- homogeneous if b is a null matrix
- tmpossible if there are no solutions.

indeterminate if there are more than one solution.

Using inverse matrices allows to get immediately the following proposi-

tion.
Proposition 166 a) Any homogeneous system of linear equations has a so-

lution.

b) Any Cramer system has a unique solution.
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Proof. First, it is obvious to see that x = 0 is a solution of any homogeneous
system.

Second, in a Cramer system, matrix A is invertible; therefore let = =
A~'b. Remember that AA~! = I,, and that I,b = b. Therefore x solves the
system simply because AA~1b = b. Moreover x = A~'b is the unique solution.

4.3.3 Computing solutions
A simple example

Assume n = 2 and p = 2 in the introductory example (section 4.3.1). Two
stocks are traded and only two economic situations may occur tomorrow.

The possible future prices and desired consumptions are given by:
31 12
M — C =
[ 4 2 ] [ 18 ]
The investor faces the following system:

3$1+1’2 = 12
4y + 229 = 18

A simple method to solve such a system is to substitute a given unknown
in one of the two equations by a function of the other unknown (obtained

using the other equation). For example, from the first equation we obtain:
Replacing x5 by 12 — 3z in the second equation leads to:

dry +2 x (12 —3x;) =18
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It then follows:
0y, +24 =18

and finally x; = 3. Replacing x; by 3 in equation (4.10), gives the complete
solution:
To=12—-3x3=3

The substitution method is simple for systems with two, and perhaps

three, equations. However, it becomes completely unmanageable when many

equations and unknowns appear in a large system. Another more systematic
method has then to be used.
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The Gauss method

The Gauss method provides an algorithm to solve systems of linear equations.
It can be viewed as a generalization of the substitution method illustrated in

the above example.

Consider a system of n equations (numbered from 1 to n) to be solved.

The sequence of steps below leads to a solution when there is one.

- If a;1 # 0, replace the first equation by the equivalent one obtained by
dividing each term by aq;. It writes:
ap . _ b

a2
1+ —To+ ...+ —Tp =
ail a11 a1

(4.11)

- To each equation i, i = 2, ..., n, substract a;; times equation (4.11). For

example, equation 2 becomes:

12 Q1p az1b;
2121 + A92T9 + ... + Q2pTy — Q21 <$’1 + —29 + ... + —Tp | = bQ —
an an a11

After simplification, we get:

a21012 21013 a2101p azby
((lgg— To+ | Aoz — T3+...+ Qop — [Ep:bg—

al ai al ail

(4.12)

It appears that z; is not any more in the equation. Repeat the same

transformation on the other equations in order to get a system where the

first variable z; only appears in equation (4.11).

- Proceed to the following changes:

r_ ;10715
a11
ai1by
/ (3
a11

fori=2,...nand j =2,...,p.
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- If ab, # 0, divide the right and left hand sides of equation (4.12) by ab,
to get:

a
23
T2 + — T3 + ...+ — Tp =
a

(4.13)

22 oY) o

- To equations i, i = 3,...,n, substract a}, times equation (4.13). For
example, equation 3 becomes:

CL, a/ a/ b/

Aoy + ... + a3,x, — a3y (332 - 723:1:3 +..+ #gjp> = b — 522

!/
22 (&%) Q99

The computing process is pursued in order to eliminate one more variable
in each equation. When only one variable remains we get easily its value and
go back to calculate the values of the other variables.

Finally, different situations may be encountered:

a) What happens when one of the diagonal coefficients (ay; at the first
stage, ab, at the second, etc.) is equal to 0 7

If this happens, it is sufficient to change the order of equations. If all
such coefficients are zero, the system is indeterminate.

b) If, at the end of the process there remain equations without unknowns,
two cases have to considered:

1) if the two members of such equations are different, the system has
no solution.
2) if the two members are equal, this equation can be deleted.

c) If several variables remain in the last equation, the number of solutions
is infinite.

d) If only one variable remains in the last equation, the value of this vari-
able can be computed and replaced in the other equations to get iteratively

the values of all unknowns.
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Example 167 Consider the matriz A and the vector b defined by:

w
T O W N
NN
= O =N

The system of linear equations is then:

r1+ 229 + 43 =
-1 + 31’2 + 21‘3 =
31’1 + 2[13‘3 =

=~ O = N

201+ 519 + 13 =

To apply the Gauss algorithm, it is convenient to concatenate A and b in the

following way.

C=[A]p] =

T O W N
— NN

= O = N

The first coefficient is equal to 1 so the first transform does not change
anything. As as; = —1, we add the first line to the second. As a3 = 3, we
substract 3 times the first line to the third one and finally we substract twice
the first line to the last one.

The transformed matriz we denote C' is equal to:

1 2 4 2
|05 603
0 —6 —10 0
01 -7 0
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This transformation is equivalent to multiply A by the elementary matri-
ces Ir1(1), I31(—3) and I41(—2), defined as follows (see section 4.2.6) :

1000 1 000 000
1100 0 10 0 10 0
21(1) 0010 a(=3) 3010 u(=2) 010
0001 0 00 1 2.0 0 1

The same process is repeated on C' and leads to C?, the pivotal term in this

case being ¢y, = 5.

12 4 2
o |01 65 35
0 0 —14/5 18/5
0 0 —41/5 —3/5

The last step is realized by taking the pivotal term ¢y = —14/5. We get:

12 4 2

co_ |01 6/5 35
00 1 —9/7
00 0 -—7807

The last line of C® corresponds to the equation:

.

0=
7

which of course has no solution. The linear system is therefore impossible to

solve.
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limit, 50 null, 102

linear, 44 product, 107
monotonic, 57 product by a real number, 106
odd, 45 square, 102
range, 44 substraction, 106
Riemann-integrable, 87 transpose, 104
right-continuous, 55 triangular, 102
maximum

image, 20 global, 50

inclusion, 11 local, 49

injection, 22 method

integral Gauss, 120
improper, 98 substitution, 118
of a step function, 83 minimum
Riemann, 87 global, 49

interior, 30 local, 49

intersection, 12
interval, 28 ordering, 17

complete, 18

limit, 50 partial, 18
infinite, 53
left, 52 partition, 15
right, 51 pre-ordering, 17
Mac Laurin formula, 78 range, 20
mapping, 20 reciprocal, 22
bijective, 22 relation
identity, 24 asymmetric, 17
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injective, 22 equivalence, 19
inverse, 23 graph, 20
one-to-one, 22 ordering, 17
range, 20 refl?exive, 17
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